NONDEGENERATE CURVES ON A RIEMANNIAN MANIFOLD

E. A. FELDMAN

1. Introduction

Let X be a connected Riemannian manifold of dimension $n \geq 3$. By a nondegenerate curve we mean a C^2 immersion γ of the interval I or the circle C into X, such that the square of the geodesic curvature $k_q(\gamma)^2$ never vanishes. By forcing the geodesic curvature to be positive we are able to associate with γ a moving orthonormal 2-frame $(t(\gamma)(t), n(\gamma)(t)), t(\gamma)(t), n(\gamma)(t) \in T(X)_{\tau(t)}$ along γ , where $t(\gamma)(t)$ is the unit tangent to γ , and $n(\gamma)(t)$ is the principal normal; these all will be discussed in more detail in the next section. We can also associate with γ the continuous positive function $k_{\theta}(\gamma)(t)$ given by the geodesic curvature. Let $\pi_0: V_2(X) \to X$ be the Stiefel bundle of orthonormal two frames constructed from T(X). Thus, we can associate with γ , a curve $\varphi(\gamma)(t) =$ $(\gamma(t), t(\gamma)(t), n(\gamma)(t), k_{\sigma}(\gamma)(t))$ in the bundle $\pi: V \to X$ where $V = V_2(X) \times R^+$ (R^+) being the positive reals) which is a cross-section over γ . Let us pick $\theta_0 \in C$, and $v_0 = (x_0, t_0, n_0, k_0) \in V_{x_0}$. Let N_0 be the nondegenerate immersions γ of the circle C into X, such that $\varphi(\gamma)(\theta_0) = v_0$. Our main theorem states that φ , which associates with each $\gamma \in N_0$ a loop $\varphi(\gamma)$ in V based at v_0 , in a weak homotopy equivalence, and hence by Whitehead's theorem a homotopy equivalence (provided N_0 has a suitable topology). Hence we see that the arc-components of N_0 (nondegenerate regular homotopy classes) are in a one-one correspondence with the elements of $\pi_1(V_2(X) \times R^+, v_0) \cong \pi_1(v_2(X), (x_0, t_0, n_0))$. In the case where $X = R^3$, with the Euclidean (flat) metric we recover the main theorem of [3].

2. Definitions and an outline of the paper

Let X be a Riemannian manifold of dimension ≥ 3 , g its Riemann metric, and D the Riemannian connection (covarient derivative) induced by g (see [6]). Let $\gamma: I \to X$ be an immersion, t parametrize the interval [a, b] = I, $\gamma(t)$ be the parametrized curve, and $\dot{\gamma}(t) = d\gamma/dt|_t = d\gamma(d/dt) \in T(X)_{\gamma(t)}$ be the tangent vector of the parametrized curve $\gamma(t)$. The square of the geodesic curvature is given by the formula $k_g(\gamma)(t)^2 = |\dot{\gamma}(t)|_{r(t)}^2 |D_{\dot{\gamma}(t)}t(\gamma)(t)|_{r(t)}^2$ where $t(\gamma)(t) = \dot{\gamma}(t)/|\dot{\gamma}(t)|_{r(t)}$

Communicated by J. Eells, Jr., March 31, 1970. This research was partially supported by NSF contract #8191.

is the unit tangent vector of γ at $\gamma(t)$, and $|v|_{r(t)} = g(\gamma(t))(v,v)^{1/2}$ where $v \in T(X)_{r(t)}$. It is easy to see by a direct calculation that this number is independent of the orientation and parametrization chosen for I. Let us fix once and for all, an orientation for I. If γ is nondegerate, we can define a unique principal normal vector by the formula

$$n(\gamma)(t) = [D_{\dot{\gamma}(t)}(t(\gamma)(t))] |\dot{\gamma}(t)|^{-1} (+\sqrt{(k_{g}(\gamma)(t))^{2}})^{-1}.$$

We will always follow this convention. It is again easily seen that $n(\gamma)$ is independent of the choice of parameter on I. (It does depend upon the orientation which we have fixed.) Finally, we set $k_g(\gamma)(t) = +\sqrt{k_g(\gamma)(t)^2}$. We note that $k_g(\gamma)$ and $n(\gamma)$ are of class C^{k-2} , and $t(\gamma)$ is of class C^{k-1} , whenever γ is of class C^k .

Let $\pi_0\colon V_2(X)\to X$ be the Stiefel bundle of 2-frames in *n*-space associated with the tangent bundle T(X). By this we mean for each $x\in X$, the fiber $\pi_0^{-1}(x)=V_2(X)_x$ is the Stiefel manifold of orthonormal 2-frames in the Euclidean vector space $(T(X)_x,g(x))$. We recall that $V_2(X)_x$ is compact, and can be viewed as a closed submanifold of $S_x\times S_x$ where S_x is the unit sphere in $T(X)_x$. In fact most of the time we will view $V_2(X)_x$ as a closed bounded subset of $T(X)_x\times T(X)_x$, i.e., $V_2(X)=\{(v,\omega)\in T(X)_x\times T(X)_x,|v|_x=|\omega|_x=1$, and $g(x)(v,\omega)=0\}$. Finally, let $V=V_2(X)\times R^+$, where R^+ denotes the strictly positive real numbers, and let $\pi\colon V\to X$ be the composition of the projection onto the first factor followed by π_0 .

Let us fix an orientation for the circle C, and let I = [0, 2]. Let us set $E(I, X) = \{f: [0, 2] \to X \mid f \text{ is } C^2, \text{ and } f \text{ is a nondegenerate immersion}\}.$ Let E(C,X) be those elements of E(I,X) which can be extended to a C^2 periodic map of period 2 and principal domain of definition [0, 2]. Let us endow these sets with the C^2 -topology. (The two possible choices of C^2 -topology agree because I and C are both compact, [2], [8]. In fact, these are open subsets of the function spaces consisting of all mappings $C^2(I, X)$ and $C^2(C, X)$.) The elements of E(I, X) and E(C, X) are the parametrized non-degenerate curves. Let ND(I, X) and ND(C, X) denote respectively the set of equivalence classes of elements of E(I, X) and E(C, X), where we identify f and g if and only if they differ by an orientation preserving C^2 reparametrization of I or C. If we identify an element of E(I, X) which is parametrized proportional to arc length with the corresponding unique element of ND(I, X), we can view ND(I, X) as a subspace of E(I, X). Let us define $R: E(I, X) \times [0, 1] \to ND(I, X)$ by the formula $R(\gamma, u)(t) = \gamma((1-u)t + us_{\gamma}(t))$ where s_r is the parameter proportional to arc length, and t is the given parameter. R is continuous and defines a deformation retract of E(I, X) onto ND(I, X), and therefore these spaces have the same homotopy type. Let $C^k(I, M)$ denote the C^k functions from I into a manifold M with the C^* topology.

If $\gamma \in ND(I, X)$ or E(I, X), let $t(\gamma) \in C^1(I, T(X))$ denote the map $t(\gamma)(t) = \text{unit}$

tangent vector to γ at $\gamma(t)$. The induced map $t\colon E(I,X)\to C^1(I,T(X))$ is clearly continuous. Similarly we can define continuous maps $n\colon E(I,X)\to C^0(I,T(X))$ and $k_g\colon E(I,X)\to C^0(I,R^+)$ by the formulas $n(\gamma)(t)=$ principal normal to γ at $\gamma(t)$, and $k_g(\gamma)(t)=$ geodesic curvature of γ at $\gamma(t)$. We can also define $v\colon E(I,X)\to C^0(I,V)$ by $v(\gamma)(t)=(\gamma(t),t(\gamma)(t),n(\gamma)(t),k_g(\gamma)(t))$. When we replace I by C all the same statements hold true. Let us pick $v_0=(x_0,t_0,n_0,k_0)\in V$, let $E_0=\{\gamma\in E(I,X)\,|\,v(\gamma)(0)=v_0\}$, and give E_0 the induced topology. We can now state precisely our main theorem.

Theorem A. Let $p: E_0 \to V$ be defined by $p(\gamma) = v(\gamma)(1)$; p is clearly a continuous map. Let us pick a base point $\gamma_0 \in p^{-1}(v_0)$, and let $p_*: \pi_k(E_0, p^{-1}(v_0); \gamma_0) \to \pi_k(V, v_0)$ be the usual induced map on homotopy groups (and sets). Then p_* is an isomorphism for all $k \geq 2$, and a bijection for k = 1.

We prove this by showing that the triple $p: E_0 \to V$ satisfies enough of a homotopy lifting property to imply p_* is a bijection. We define and discuss this property in some detail in § 3, and show among other things that it is a local property.

Pick a point $\theta_0 \in C$, and let $N_0 = \{ \gamma \in ND(C, X) \mid v(\gamma)(\theta_0) = v_0 \}$. Thus the deformation retract defined by R gives us a homotopy equivalence between the spaces $p^{-1}(v_0)$, $p^{-1}(v_0) \cap E_0(C, X)$ and N_0 . We show in § 7 that $\pi_i(E_0, \gamma_0) = 0$ for all i. Therefore the homotopy sequence implies that $\pi_i(N_0, \gamma_0) \cong \pi_{i+1}(V, v_0) \cong \pi_{i+1}(V_2(X), (x_0, t_0, n_0))$, assuming γ_0 is parametrized proportional to arc length. If we set i = 0, we can classify the arc-components of N_0 , i.e., the based non-degenerate regular homotopy classes, by looking at $\pi_1(V_2(X), (x_0, t_0, n_0))$. Let $\Omega_0 = \{ \gamma \in C^0(C, V) \mid \gamma(\theta_0) = v_0 \}$, where Ω_0 has the C^0 (compact-open) topology. Let $\varphi: N_0 \to \Omega_0$ be defined by $\varphi(\gamma)(t) = (\gamma(t), t(\gamma)(t), n(\gamma)(t), k_0(\gamma)(t))$; φ is continuous and by our theorem a weak homotopy equivalence. Both N_0 and Ω_0 carry the structure of paracompact Banach manifold [10]. Hence by theorems of Palais [9] these spaces satisfy the hypotheses of the Whitehead theorem. Thus $\varphi: N_0 \to \Omega_0$ is a homotopy equivalence.

We will close this section by outlining the remainder of this paper. § 3 as mentioned deals with a local lifting property which will imply Theorem A. In § 4 we compare locally the case of an arbitrary metric and the flat metric induced by taking Riemann normal coordinates as orthonormal coordinates of a flat space. We can then reduce the "curved" space problem to a slightly more involved "flat" problem. The crucial lemma of this paper is Lemma 5.1. It is a generalization of the proposition in [5]; also see [3, 2.1]. The idea is as follows. Let λ : $[0,1] \rightarrow S^{n-1}$ be an immersion, and $\rho(t) > 0$ a C^1 function. Then $\gamma(t) = \int_0^t \lambda(\tau) \rho(\tau) d\tau$ is nondegenerate, $t(\gamma)(1) = \lambda(1)$, $n(\gamma)(1) = t(\lambda)(1)$, and $k_g(\gamma)(1) = 1/\rho(1)$. If we use Proposition 4.1 to reduce the problem to a Euclidean one, we can then try to apply Smales immersion theorem [11], to curves

on the sphere, and then try to construct the desired nondegenerate curves γ by

picking the appropriate weighting function ρ . However, in our lifting problem we must be able to construct ρ such that $\gamma(1) = x$, x being some relatively arbitrary point near 0. In § 5.1 we see how arbitrary x can be, provided λ has some nice properties. In § 6 we prove some technical lemmas which enable us to apply Lemma 5.1 by insuring that our λ's have the desired properties. § 7, entitled odds and ends, contains a technical reparametrization, Lemma 7.1, and the proof that E_0 is weakly contractable, Corollary 7.2. In § 8 we reduce the proof of Theorem A to an abstract Theorem 8.2, which we prove in § 9. In § 8 we have to introduce certain Sobolev spaces. Anything we need can be found in [1, pp. 165–168].

3. Abstract topology

Let I^n = the n-cube = $\{(x_1, \dots, x_n) \mid 0 \le x_i \le 1, 1 \le i \le n\} \subseteq R^n, I_{k,i}^{n-1} = \{x \in I^n \mid x_k\}$ $=i\}, i=0,1, F^{n-1}=\bigcup_{k=1}^{n}I_{k,1}^{n-1}\,\partial I^{n}=\bigcup_{(k,t)}I_{k,t}^{n-1}, \text{ and } J^{n-1}=\{x\in\partial I^{n}\,|\,x\notin \text{Int }I_{n,1}^{n-1}\}.$ **Definition 3.1.** A one parameter family of maps $h_{t}\colon I^{n}\to I^{n}, 0\leq t\leq 1,$

is said to be an admissible deformation of I^n if:

- the induced map $H: I \times I^n \to I^n$ defined by $H(t, x) = h_t(x)$ is continuous,
- ii) $h_0 = id, h_t | F^{n-1} = id \text{ for all } t \in [0, 1], \text{ and}$
- iii) $h_t(\partial I^n) \subseteq \partial I^n$ for all $t \in [0, 1]$.

Remark. Let h_t be an admissible deformation of I^n , and $K: (I^n, F^{n-1}) \rightarrow$ (I^n, J^{n-1}) a homeomorphism mapping F^{n-1} homeomorphically onto J^{n-1} . Let $\bar{h}_t = K \circ h_t \circ K^{-1}$ and let $\bar{H}: I \times I^n \to I^n$ be the induced map defined by $\bar{H}(t, x)$ $= \tilde{h}_t(x) = K \circ H(t, K^{-1}x)$. Then \tilde{H} is continuous, $\tilde{h}_t(x) = x$ for all $x \in J^{n-1}$, $t \in [0, 1], \hat{h}_0 = id$ and $\hat{h}_t(\partial I^n) \subseteq \partial I^n$. Hence, if we replace F^{n-1} by I^{n-1} in Definition 3.1 we get a completely equivalent notion.

Definition 3.2. Let $h_t: I^n \to I^n$, $0 \le t \le 1$, be an admissible deformation of I^n . We say h_t is a strong admissible deformation if $h_t(I_{k,1}^{n-1}) \subseteq I_{k,1}^{n-1}$ for $1 \le k \le n$.

Definition 3.3. Let $\pi: E \to B$ be a triple where E and B are topological spaces, and π is a continuous map.

We say $\{\pi: E \to B\}$ has (strong) property P, if for each n and each pair of continuous maps $\varphi_0: I^n \to B$ and $\psi: F^{n-1} \to E$ such that $\pi \circ \psi = \varphi_0 | F^{n-1}$, we can find a (strong) admissible deformation h_t of I^n and an extension Ψ of ϕ to all I^n such that $\pi \circ \Psi = \varphi_0 \circ h_1$.

Let us note that there is a notion exactly equivalent to Definition 3.3 if we replace F^{n-1} by J^{n-1} . In fact, $\{\pi: E \to B\}$ has property P if and only if it has

property P with J^{n-1} replacing F^{n-1} in Definition 3.3. If we use this remark, and then apply the usual proof in the case where $\pi: E \to B$ is a Serre fibration (see [7]) we get the following important proposition.

Proposition 3.4. Let $\pi: E \to B$ be a triple consisting of two topological spaces and a continuous map which satisfies property P. Pick $b_0 \in B$, and $y_0 \in \pi^{-1}(b_0) = F$. Then the canonical map $\pi_*: \pi_n(E, F; y_0) \to \pi_n(B, b_0)$ is a bijection (1 - 1) and onto).

The following elementary proposition follows immediately from the definitions.

Proposition 3.5. Let $\pi: E_1 \to B$, and $p: E_2 \to E_1$ have (strong) property P. Then $\pi \circ p: E_2 \to B$ satisfies (strong) property P.

Definition 3.6. Let E and B be topological spaces, and $\pi: E \to B$ a continuous map. Let $\varphi: I^n \to B$, and $\psi: F^{n-1} \to E$ be continuous maps such that $\pi \circ \psi = \varphi | F^{n-1}$. By a deformation of (φ, ψ) we mean a continuous map $\tilde{\varphi}: F^{n-1} \times I \to E$ such that $\pi \circ \psi_t = \varphi$ on F^{n-1} and $\psi_0 = \psi$ where $\psi_t = \tilde{\psi} | F^{n-1} \times \{t\}$.

Proposition 3.7. Let $\pi: E \to B$ be as above. Then π has (strong) property P if and only if, for each n and each pair of continuous maps $\varphi: I^n \to B$ and $\varphi: F^{n-1}$ such that $\pi \circ \psi = \varphi | F^{n-1}$, we can find:

- i) a deformation ψ_t of (φ, ψ) ,
- ii) a (strong) admissible deformation h_t of I^n , and
- iii) an extension Ψ of ψ_1 to I^n such that $\pi \circ \Psi = \varphi \circ h_1$.

Proof. If $\pi\colon E\to B$ has (strong) property P, this is a triviality. Let $\varphi\colon I^n\to B$ and $\varphi\colon F^{n-1}\to E$ be a pair of continuous maps such that $\pi\circ\psi=\varphi|F^{n-1}$. We want to find a (strong) deformation \bar{h}_t of I^n and an extension Ψ of ψ to I^n such that $\pi\circ\Psi=\varphi\circ\bar{h}_1$. Let us define a (strong) admissible deformation \bar{h}_t of I^n as follows. Let h_t be the (strong) admissible deformation given by ii) in the hypotheses. Let $C_t=(x\in I^n\mid t/2\le x_k\le 1)$ for $0\le t\le 1$, and $T_{k,0}^{(t)}=\{(x_1,\cdots,x_n)\mid x\in I^n, x_k=st/2,st/2\le x_t\le 1$ for $t\ne k,0\le s\le 1$. Then $t\ge t$ for $t\ne k,0$ deformation if $t\ge t$ for each fixed t. Let us introduce the following shorthand if $t\ge t$ for $t\ge t$ and $t\ge t$ has $t\ge t$ for $t\ge t$ for $t\ge t$ for $t\ge t$ has $t\ge t$ for $t\ge t$ for

 $x \in T_{k,0}^{(1)}$, then $0 \le x_k \le 1/2$, say $x_k = s/2, 0 \le s \le 1$, and therefore $s/2 \le x_l \le 1$ for $l \ne k$. We then set $\Psi(x) = \psi_s(\bar{h}_1(x))$. We can then check directly that Ψ extends ψ , and Ψ is continuous and well-defined, and that $\pi \circ \Psi = \varphi \circ \bar{h}_1$. This completes this proof.

Definition 3.8. Let E and B be topological spaces, and $\pi: E \to B$ a continuous map. We say $\pi: E \to B$ has strong local property P if for each $x \in B$ there exists a neighborhood U of x such that $\pi: \pi^{-1}(U) \to U$ has property P.

Theorem 3.9. If $\pi: E \to B$ has strong local property P, then it has strong property P.

Proof. For each $b \in B$, let U_b be an open neighborhood of b such that $\pi \colon \pi^{-1}(U_b) \to U_b$ has property P. Let $\varphi \colon I^n \to B$, and $\varphi \colon F^{n-1} \to E$ be continuous maps such that $\pi \circ \psi = \varphi$ on F^{n-1} . The sets $\varphi^{-1}(U_b)$ forms an open cover of I^n . Hence by the Lebesgue covering lemma there exists an integer N > 0 such that any subcube of I^n , with sides parallel to those of I^n and side of length 1/N, is contained in one of the sets $\varphi^{-1}(U_b)$. Let $B_I = B_{i_1, \dots, i_n} = \{x \in I^n | i_k/N \le x_k \le i_k + 1/N\}$, $0 \le i_k \le N - 1$, $1 \le k \le n$. Set $B_{I,k,0} = \{x \in B_I | x_k = i_k/N\}$, $B_{I,k,1} = \{x \in B_I | x_k = i_k + 1/N\}$, and $F_I = \bigcup_{k=1}^n B_{I,k,0}$. The B_I 's cover I^n , and each B_I is contained in one of the sets $\varphi^{-1}(U_b)$. We will order the $(N)^n$ n-tuples $I = (i_1, \dots, i_n)$ lexicographically. If I is an n-tuple, let I + 1 be the n-tuple immediately succeeding I, and $\nu(I)$ the number of n-tuples less than or equal to I. We now construct the continuous extension Ψ of φ and the strong admissible deformation h_i of I^n by induction.

Induction step I. Let $C_I = F^{n-1} \cup \bigcup_{I' \leq I} B_{I'}$. Assume there exist a continuous map $\Psi_I \colon C_I \to E$ extending ϕ , and a continuous function $H_I \colon [0, J(I)] \times I^n \to I^n$ where $J(I) = \nu(I)/N^n$ with the following properties. Set $h_{I,t}(x) = H_I(t,x)$. Then $h_{I,0} = \operatorname{id}, h_{I,t} | F^{n-1} = \operatorname{id}$ for $0 \leq t \leq J(I), h_{I,t}(I_{k,1}^{n-1}) \subseteq I_{k,1}^{n-1}$ and $\pi \circ \Psi_I = \varphi \circ h_{I,J(I)}$.

We will now prove our theorem by showing that step I implies step I + 1, and noting that step 0 is trivially true, and step $(N)^n$ is the desired result. Look at B_{I+1} and note that $F_{I+1} = B_{I+1} \cap C_I$. Let $f = \varphi \circ h_{I,J(I)} | B_{I+1}$, and $p = \Psi_I | F_{I+1}$. But we know that B_{I+1} is contained in one of the $\varphi^{-1}(U_b)$. Hence we can find continuous maps $K: [J(I), J(I+1)] \times B_{I+1} \rightarrow B_{I+1}$, and $\underline{P}: B_{I+1} \rightarrow E$ extending p with the following properties. K(J(I), x) = x, K(t, x) = x for $x \in F_{I+1}$ and $t \in [J(I), J(I+1)], K(t, x) \in B_{I+1,k,1}$ for $x \in B_{I+1,k,1}$ and $t \in [J(I), J(I+1)]$, and $\pi \circ \underline{P}(x) = f(K(J(I+1), x))$ for $x \in B_{I+1}$. Define $\Psi_{I+1} : C_{I+1} = C_I \cup B_{I+1} \to E$ by $\Psi_{I+1}|C_I = \Psi_I$ and $\Psi_{I+1}|B_{I+1} = P$. Ψ_{I+1} is clearly a well-defined continuous extension of ϕ . We now extend $K: [J(I), J(I+1)] \times B_{I+1} \to B_{I+1}$ to a map $K: [J(I), J(I+1)] \times I^n \to I^n$ as follows. If for some $k, x_k \leq i_k/N^n$, then we set $K(t, (x_1, \dots, x_n)) = (x_1, \dots, x_n)$. We are left with the case where $x_k \ge i_k/N^n$ for all k. We then set $K(t,x)_k = x_k$ provided $x_k \ge (i_{k+1})/N^n$. We define \bar{x} by the formula $(\bar{x})_l = x_l$ if $i_l/N^n \le x_l \le (i_{l+1})/N^n$ for some index l, and by $(\bar{x})_k = (i_{k+1})/N^n$ if $x_k \ge (i_{k+1})/N^n$. Then $\bar{x} \in B_{I+1}$, and we set $K(t, x)_t$ $=K(t,\bar{x})_t$ where l is an index such that $i_t/N^n \leq x_t \leq (i_{t+1})/N^n$. Note if we set $k_t(x) = K(t, x)$, the k_t have the following properties. $k_t(x) = x$ for all $x \in C_I$, $k_{J(I)}(x) = x$ for all $x \in I^n$, and $k_t(I_{k,1}^{n-1}) \subseteq I_{k,1}^{n-1}$ for all t. Let us define

$$h_{I+1,t} = \begin{cases} h_t(x) , & 0 \le t \le J(I) , \\ h_{J(I)}(k_t(x)) , & J(I) \le t \le J(I+1) , \end{cases}$$

and set $H_{I+1}(t,x) = h_{I+1,i}(x)$. It is then easy to directly check that H_{I+1} and Ψ_{I+1} have all the desired properties.

In the remainder of this paper we will prove the following theorem.

Theorem A'. Let $p: E_0 \to V$ be the triple defined in § 2. Then $p: E_0 \to V$ has strong local property P.

By using Proposition 3.4 and Definition 3.8 we see that Theorem A' implies Theorem A. Let $(x_0, v, k) \in V$, we want to look at neighborhoods U of this point of the form $U = W \times V_2 \times (k_0, \infty)$, where $k_0 < k$ and W is a sufficiently small neighborhood which is the domain of x_0 centered Riemann normal coordinates (x_1, \dots, x_n) . The exact form of the neighborhood U will be chosen in the next section. However, given $\psi \colon F^{n-1} \to p^{-1}(U)$ and $\varphi \colon I^n \to U$ such that $p \circ \psi = \varphi \upharpoonright F^{n-1}$ we cannot lift φ immediately because of the nature of our lifting mechanism. We must first "reparametrize" the cube I^n , and preform some preliminary deformations on the curves in φ . It is because of this that the topological abstractions of this section are needed.

4. A local comparison to determine the desired neighborhood

Let (X,g) be the given Riemannian manifold, and let $(\tilde{x},\tilde{v},\tilde{k}) \in V, \tilde{k} \in R^+, \tilde{v} = (\tilde{t},\tilde{n})$, and $\tilde{v} \in V_2(X)_{\tilde{x}}$. Let $U = W \times V_2 \times (k,\infty)$, where $0 < k < \tilde{k}$, W is the domain of \tilde{x} -centered geodesic coordinates (x_1,\cdots,x_n) and V_2 is the Stiefel manifold of orthonormal 2-frames in n-space. Let the metric tensor g take its usual coordinate form $g(x) = \sum g_{ij}(x) dx^i dx^j$ on W. We recall that $g_{ij}(0) = g_{ij}(\tilde{x}) = \delta_{ij}, (\partial g_{ij}/\partial x_k)(0) = 0$, and therefore the Christoffel symbols $I^k_{ij}(0) = 0$. If we identify the tangent space $I(X)_x, x \in W$, with $I(X)_x$ in the usual way (i.e., $I(X)_x = u$) is identified with $I(X)_x = u$ in the unit as $I(X)_x = u$ varies over $I(X)_x = u$ we identify $I(X)_x = u$ with a slightly different subset of $I(X)_x = u$ determined by the variation in the metric. This identification clearly varies smoothly with $I(X)_x = u$ we can also define upon $I(X)_x = u$ the flat metric $I(X)_x = u$ we call it $I(X)_x = u$ is a nondegenerate immersion with respect to $I(X)_x = u$ we call it $I(X)_x = u$ is a nondegenerate immersion with respect to $I(X)_x = u$ we call it $I(X)_x = u$ is a nondegenerate immersion with respect to $I(X)_x = u$ in $I(X)_x = u$ is $I(X)_x = u$ in $I(X)_x = u$ in I(

Let us pick $(x, v, l) \in W \times V_2 \times (k, \infty)$. Furthermore, assume $v = (a, b) \in R^n \times R^n$, where $\sum (a_i)^2 = \sum (b_i)^2 = 1$ and $\sum a_i b_i = 0$ (i.e., (a, b) is a 2-frame with respect to the flat metric). Let $t_0 \in I$, and $\gamma \colon I \to W$ be a g_F -nondegenerate curve such that $\gamma(t_0) = x$, $t_F(\gamma)(t_0) = a$, $n_F(\gamma)(t_0) = b$, and $k_F(\gamma)(t_0) = l$. We then see $t(\gamma)(t_0) = a/(\sum g_{ij}(x)a_ia_j)^{1/2}$, and $(k_g(\gamma)(t_0))^2 = (\sum g_{ij}(x)a_ia_j)^{-3}([\sum g_{ij}(x)a_ia_j]^2)$, where $c_i = b_i l + \sum_{J,k} \Gamma^i_{jk}(x)a_ja_k$. Hence

 $t(\gamma)(t_0)$ and $k_g(\gamma)(t_0)$ depend upon x, a, b and l alone and not on our choice of γ . We can use these formulas to define the functions $t(x, a) = t(\gamma)(t_0)$ and $k_g(x, a, b, l) = k_g(\gamma)(t_0)$. Now $k_g(0, a, b, l)^2 = l^2$, and $\partial(k_g(0, a, b, l)^2)/\partial l = 2l$. Hence because of the compactness of V_2 we can find a neighborhood W_1 of $0, W_1 \subseteq W$ such that $k_g(x, a, b, l)^2 > (2k/3)^2$, if k < l and $x \in W_1$. In that $k_g(\gamma)(t_0) = k_g(x, a, b, l) > 0$ if $x \in W_1$, we can define the principal normal $n(\gamma)(t_0) = k_g(x, a, b, l)^{-1}(\sum g_{ij}(x)a_ia_j)^{-2}[d]$ where $d = c(\sum g_{ij}(x)a_ia_j) - a(\sum g_{ij}(x)a_ic_j), c_j = b_jl + \sum_{i,k} \Gamma^j_{ik}(x)a_ia_k$ and $c = (c_1, \dots, c_n)$. We see that $n(\gamma)(t_0)$ does not depend on γ but only on x, v = (a, b) and l, and we can then set $n(x, a, b, l) = n(\gamma)(t_0)$. Hence we have defined a smooth 1-1 map α : $W_1 \times V_2 \times (k, \infty) \to W_1 \times V_2 \times (2k/3, \infty)$ by the formula $\alpha(x, (a, b), l) = (x, t(x, a), n(x, a, b, l), k_g(x, a, b, l)$.

Let us pick $(x, v, l) \in W \times V_2 \times (k, \infty)$ where we assume $v = (a, b) \in \mathbb{R}^n \times \mathbb{R}^n$, $\sum g_{ij}(x)a_ia_j = \sum g_{ij}(x)b_ib_j = 1$, and $\sum g_{ij}(x)a_ib_j = 0$ (i.e., (a, b) is an orthonormal 2-frame in the metric g(x)). Let $t_0 \in I$, and let us choose a g-nondegenerate curve $\gamma: I \to W$ such that $\gamma(t_0) = x$, $t(\gamma)(t_0) = a$, $n(\gamma)(t_0) = b$ and $k_q(\gamma)(t_0)$. We then see that $t_F(\gamma)(t_0) = a/(\sum_i (a_i)^2)^{1/2} = t_F(x, a)$. We also see that $k_F(\gamma)(t_0)^2 = (\sum (a_i)^2)^{-3}[(\sum (c_k)^2)(\sum (a_k)^2) - (\sum a_k c_k)^2] = k_F(x, a, b, l)^2$ where $c_k = b_k l - \sum_{i,j} \Gamma_{ij}^k(x) a_i a_j$. Hence $k_F(\gamma) (t_0)^2$ depends only on (x, a, b, l). Furthermore $k_F(0, a, b, l)^2 = l^2$, and $\partial (k_F(0, a, b, l)^2)/\partial l = 2l$. By the compactness of V_2 , we can find a neighborhood W_2 of 0, $W_2 \subseteq W$ such that $k_F(x,a,b,l)^2 > (2k/3)^2$ for l > k and $x \in W_2$. Since $k_F(\gamma)(t_0) = k_F(x, a, b, l) > 0$ for $x \in W_2$ (l > k), we can define the principal normal $n_F(\gamma)(t_0) = n_F(x, a, b, l) = k_F(x, a, b, l)^{-1}$ $(\sum (a_k)^2)^{-2} [\sum (a_k)^2 c - (\sum a_k c_k) a], \text{ where } c_k = b_k l - \sum_{i,j} \Gamma_{ij}^k(x) a_i a_j.$ $n_F(\gamma)(t_0)$ depends only upon (x, a, b, l). Then as before, we have defined a smooth 1-1 map β : $W_2 \times V_2 \times (k, \infty) \to W_2 \times V_2 \times (2k/3, \infty)$ by the formula $\beta(x, (a, b), l) = (x, t_F(x, a), n_F(x, a, b, l), k_F(x, a, b, l))$. Finally we note that $\alpha \circ \beta = id$ and $\beta \circ \alpha = id$ whenever these compositions are well-defined. This discussion can be summerized by the following proposition.

Proposition 4.1. Let us pick k > 0. Then we can find a neighborhood W_0 of 0, $W_0 \subseteq W$, which depends only upon our choice of k, with the following properties:

- 1) If $\gamma: I \to W_0$ is g-nondegenerate, and $k_q(\gamma)(t) > k$, then γ is g_F -nondegenerate and $k_F(\gamma)(t) > 2k/3$. Furthermore, if $\gamma: I \to W_0$ is g_F -nondegenerate and $k_F(\gamma)(t) > 2k/3$, then γ is g-nondegenerate and $k_q(\gamma)(t) > k/3$.
- 2) Let us pick $(x, v = (a, b), l) \in W_0 \times V_2 \times (k, \infty)[(x, v = (a, b), l) \in W_0 \times V_2 \times (2k/3, \infty)]$. Pick $t_0 \in I$, and let $\gamma : I \to W_0$ be a $g[g_F]$ -nondegenerate curve such that $\gamma(t_0) = x$, $t(\gamma)(t_0) = a$, $n(\gamma)(t_0) = b$ and $k_g(\gamma)(t_0) = l[\gamma(t_0) = x, t_F(\gamma)(t_0) = a$, $n_F(\gamma)(t_0) = b$ and $k_F(\gamma)(t_0) = l]$. Then $t_F(\gamma)(t_0)$, $n_F(\gamma)(t_0)$ and $k_F(\gamma)(t_0)[t(\gamma)(t_0), n(\gamma)(t_0)]$ are all well-defined and depend only upon (x, a, b, l). We therefore set $t_F(\gamma)(t_0) = t_F(\gamma)(x, a, b, l)$, $n_F(\gamma)(t_0) = n_F(x, a, b, l)$ and $k_F(\gamma)(t_0) = k_F(x, a, b, l)[t(\gamma)(t_0) = t(x, a, b, l), n(\gamma)(t_0) = n(x, a, b, l)$ and

 $k_g(\gamma)(t_0) = k_g(x, a, b, l)$. In this way we define smooth 1-1 maps $\alpha \colon W_0 \times V_2 \times (k, \infty) \to W_0 \times V_2 \times (2k/3, \infty)$ and $\beta \colon W_0 \times V_2 \times (2k/3, \infty) \to W_0 \times V_2 \times (k/3, \infty)$ defined by $\alpha(x, a, b, l) = (x, t_F(x, a, b, l), n_F(x, a, b, l), k_F(x, a, b, l))$ and $\beta(x, a, b, l) = (x, t(x, a, b, l), n(x, a, b, l), k_g(x, a, b, l))$. Finally $\alpha \circ \beta = id$ and $\beta \circ \alpha = id$ whenever the composition is well-defined.

5. A generalization of Fenchel's lemma

Let R^n possess its usual Riemann (Euclidean) structure, $S^{n-1} \subseteq R^n$ be the unit sphere with its usual Riemann structure, and $\gamma: I \to R^n$ be an immersion. We recall that γ is nondegenerate if and only if $t(\gamma): I \to S^{n-1}$ is an immersion. If we are given an immersion $\lambda: [0, 1] \to S^{n-1}$, we want to find a curve $\gamma: [0, 1] \to R^n$ such that $t(\gamma) = \lambda, \gamma(1) = a$ predetermined point x, and $k(\gamma)(t) > k > 0$, k being some some predetermined number.

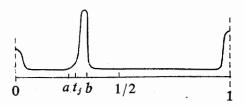
Lemma 5.1. Let $D \subseteq R^n$ be a disc radius R, $0 < R \le 1$, centered at 0. Let $c(n) = 18n/\sqrt{n}$, and B(n) = some number, B(n) > 1, which depends only upon n and which we will determine in the next section. Let k be a real number such that $0 < k < [c(n)B(n)]^{-1}$, (t_0, n_0) and (t_1, n_1) be two given orthonormal 2-frames, and k_i , i = 0, 1, be two positive numbers such that $k_i > k$, i = 0, 1. Pick $x \in D$ such that $|x| < R\sqrt{n}/(2n)$. Let $\lambda: [0, 1] \to S^{n-1}$ be an immersion such that

- 1) $\lambda(0) = t_0, \lambda(1) = t_1, t(\lambda)(0) = n_0 \text{ and } t(\lambda)(1) = n_1,$
- 2) $\lambda | [0, 1/2]$ is parametrized proportional to arc length and $|\lambda'(s)| \leq B(n)$ for $s \in [0, 1/2]$,
- 3) the set $\{\lambda(t) | 0 < t < 1/2\}$ contains the 2^n vertices of the inscribed cube. Then we can find a C^{∞} function $\rho(t), 0 < \rho(t) < 1/k$, such that the curve $\gamma(t) = \int_{-\infty}^{s} \lambda(\tau) \rho(\tau) d\tau$ has the following properties:
 - a) $\gamma(1) = x, t(\gamma)(i) = t_i, n(\gamma)(i) = n_i, k(\gamma)(i) = k_i, i = 0, 1.$
 - b) $|\gamma(t)| < R$, and $k(\gamma)(t) > k$.

Proof. It is easy to see $k(\gamma)(t) = (\rho(t))^{-1}$. Hence if $0 < \rho(t) < c(n)B(n)$, then $k(\gamma)(t) > k$. Furthermore $t(\gamma)(t) = \lambda(t)$ and $n(\gamma)(t) = t(\lambda)(t)$. Let $K = \{y \mid y = \int_0^1 \rho(\tau)\lambda(\tau)d\tau$, where $\rho(\tau)$ is smooth, $0 < \rho(\tau) < 1/k$, $\rho(i) = (k_i)^{-1}$ for i = 0, 1, and $\int_0^1 \rho(\tau)d\tau \le .9R\}$. We note that K is a convex set. Let $t_j \in (0, 1/2), 1 \le j \le 2^n$, be the points such that $\lambda(t_j)$ are the vertices of the inscribed cube. If we can show that each vertex $.9R\lambda(t_j)$ of the inscribed cube in the sphere of radius .9R is within $.9R\sqrt{n}/(3n)$ of K, then we see that $K \supseteq$ open ball about 0 of radius $R\sqrt{n}/(2n)$, which implies that $x \in K$.

Pick one of the t_j , $0 < t_j < 1/2$, such that $\lambda(t_j)$ is a vertex of the inscribe cube. Let us pick $\rho_j(t)$ as follows. Let $\rho_j(0) = (k_0)^{-1}$, $\rho_j(1) = (k_1)^{-1}$,

$$\int_{0}^{1} \rho_{j}(t)dt = .9R, \rho_{j}(t) > 0, \text{ and } \rho_{j}(t) \text{ be smooth.}$$



Pick an interval [a, b] about t_j such that $[a, b] \subseteq (0, 1/2)$ and b - a = 2(.9R)/(c(n)B(n)). But ((b-a)/2)c(n)B(n) = .9R, so we can choose $\rho_j(t)$ to also satisfy the relations $\int_0^a \rho_j(t) < 1/2(.9R\sqrt{n}/(9n))$, $\int_b^1 \rho_j(t)dt < 1/2(.9R\sqrt{n}(9n))$ and $\rho_j(t) < 1/k$. Let $\lambda_j = \int_0^1 \rho_j(t)\lambda(t)dt$. Then $\lambda_j \in K$, and $|\lambda_j - .9R\lambda(t_j)| = \left|\int_0^1 (\lambda(t) - \lambda(t_j))\rho_j(t)dt\right|$ because $.9R\lambda(t_j) = \int_0^1 \rho_j(t)\lambda(t_j)dt$. Therefore $|\lambda_j - .9R\lambda(t_j)| \le \left|\int_0^a |+|\int_a^b |+|\int_b^1 |<2\cdot 2(1/2)(.9R\sqrt{n}/(9n)) + |\int_a^b |$. But $|\lambda(t) - \lambda(t_j)| \le |b - a| \sup |\lambda'(t)| \le |b - a| B(n)$ by Taylor's formula. Therefore $\left|\int_a^b (\lambda(t) - \lambda(t_j))\rho_j(t)dt\right| < |b - a| B(n) \int_a^b \rho_j(t)dt < 1.8R c(n)^{-1}(.9R) < (1.8R)c(n)^{-1} = (.9R)(\sqrt{n}/(9n))$. Hence $|\lambda_j - .9R\lambda(t_j)| < .9R\sqrt{n}/(3n)$, which is what we wanted to show.

6. Smashing and stretching

Let us fix some notation for this section. Let $D \subseteq R^n$ be an open disc of radius R centered at 0. Give D its usual Riemann structure, and let (e_1, e_2) be an orthonormal 2-frame. Let $E = \{\gamma \colon [-1, 1] \to D \mid \text{ a } C^2\text{-nondegenerate immersion } \gamma\}$, where we give E the C^2 topology. Let k_0 be some strictly positive real number, and set $E_0(k_0) = \{\gamma \in E \mid \gamma(0) = 0, t(\gamma)(0) = e_1, n(\gamma)(0) = e_2, k(\gamma)(t) > k_0, t \in [-1, 1]\}$.

In this section we will prove two main lemmas (6.3, and 6.4) which easily imply the following theorem.

Theorem 6.1. Let X be a compact set, and $\varphi: X \to E_0(k_0)$ a continuous map. Then we can find a continuous deformation $\Phi: X \times [0,1] \to E_0(k_0)$ of φ (i.e., $\varphi(x) = \Phi(x,0)$) with the following properties:

1) There exist numbers S and T, 0 < S < T < 1, such that $\Phi(x, u)(t) = \varphi(x)(t)$ for all $|t| \ge T$, $x \in X$, $u \in [0, 1]$, and $\Phi(x, 1) = \Phi(y, 1)(t) = f(t)$ for all $0 \le |t| \le S$, $x, y \in X$, and $C^{\infty} f(t)$.

2) The path t(f(t)), 0 < t < S, passes through each of the 2^n vertices of the inscribed cube, and $\int_0^S k(f)(t)dt < B(n) = 2^{n+5}(80 + (n-1)^{1/2})$.

If we are to employ Lemma 5.1 it is clear that a theorem of this type is needed.

Sublemma 6.2. Let X be a compact set, and $a: X \to C^2([-1,1]; R)$ be a continuous map, and assume a(x)(0) = a'(x)(0) = a''(x)(0) = 0. Then there exist continuous functions $b_i: X \to \mathcal{C}^0([-1,1], R), i = 0, 1$, such that

- 1) $a(x)(s) = s^2b_0(x)(s), a'(x)(s) = sb_1(x)(s)$ and
- 2) $b_0(x)(0) = b_1(x)(0) = 0$.

Proof. This is a direct consequence of the fact $a(x)(s) = s \int_0^1 Da(x)(st)dt$ where D denotes differentiation with respect to the variable v = st.

Lemma 6.3 (Smashing lemma). Let X be a compact set, and $\varphi: X \to E_0(k_0)$ a continuous map. Let U = [-a, a], 0 < a < 1, and assume $\varphi(x) \mid U$ is parametrized by arc length for all $x \in X$. Let us extend (e_1, e_2) to an orthonormal basis (e_1, \dots, e_n) of \mathbb{R}^n , and use these as coordinates. Then we can find two neighborhoods V = [-c, c] and W = [-b, b] such that 0 < c < b < a, and a continuous deformation $\Phi: X \times [0, 2] \to E_0(k_0)$ (i.e., $\Phi(x, 0) = \varphi(x)$) of φ such that

- 1) $\Phi(x, u)(t) = \varphi(x)(t)$ if $b \le |t| \le 1$, $\Phi(x, 2)(t) = \Phi(y, 2)(t) = (t, t^2K/2, \dots, 0)$ for $|t| \le c, x, y \in X, K > \max(k(x))$ where $k(x) = k(\varphi(x))(0)$,
 - $2) \quad \int_{-b}^{b} k(\Phi(x,u))(t)dt < 1.$

Proof. Step I. Let us restrict ourselves to the interval [-a, a]. We see $\varphi(x)(s) = se_1 + (s^2k(x)/2)e_2 + a(x)(s), \ a(x)(s) = \sum_{i=1}^n a_i(x)(s)e_i, \text{ and } a_i(x)(s)$ satisfy the hypotheses of Sublemma 6.2: $0 \le |s| \le a$. Let λ be a C^{∞} function so chosen that $\lambda(s) \equiv 1$ on $[-l/2, l/2], 0 \le \lambda(s) \le 1, \lambda(s) \equiv 0$ for $|s| \ge l, l < a$, and that there exists positive constants C_1 and C_2 which are independent of our choice of l, such that $|\lambda'(s)| \leq C_1/l$ and $|\lambda''(s)| \leq C_2/l^2$. Set $p(x,s) = se_1$ $+ (s^2k(x)/2)e_2$, and let $\Phi(x, u)(s) = p(x, s) + a(x)(s)[1 - \lambda(s)u], 0 \le u \le 1$. $\Phi(x,u)(s) = \varphi(x)(s)$ if $|s| \ge l$. Note that we have not yet chosen l. There exists an $\varepsilon > 0$ such that if $\|\varphi(x) - \Phi(x, u)\|_2 < \varepsilon$ for all $x \in X$, $u \in [0, 1]$ where $\|\cdot\|_2$ is the C^2 -norm, then $\Phi(x, u) \in E_0$. But $\Phi(x, u)(s) - \varphi(x)(s) = a(x)(s)u\lambda(s), |s| \le l$, and $\Phi(x, u)(s) - \varphi(x)(s) \equiv 0, |s| \ge l$. Hence $|\Phi(x, u)(s) - \varphi(x)(s)| \le \sup_{s \to s} |a(x)(s)|$, $|\Phi'(x,u)(s) - \varphi'(x)(s)| \le |\lambda'(s)| |a(x)(s)| + |\lambda(s)| |a'(x)(s)|, \text{ and } |\Phi''(x,u)(s)| = |\Phi'(x,u)(s)| = |\Phi'($ $\varphi''(x)(s)| \le |\lambda''(s)| |a(x)(s)| + 2|\lambda'(s)| |a'(x)(s)| + |\lambda(s)| |a''(x)(s)|$. Hence by Sublemma 6.2, the compactness of X and the estimates on λ' and λ'' , we can find an l so small that $\|\Phi(x,u)-\varphi(x)\|_2<\varepsilon$ and $\int_{-1}^{1}k(\Phi(x,u))(t)dt<1/10$. Set b = l (b = b in the statement of Lemma 6.3).

Step II. Let us limit ourselves to $|s| \le l/2$. Hence $\Phi(x, 1)(s) = (s, s^2k(x)/2, l/2)$ $0, \dots, 0$, and let $\Phi(x)(s) = \Phi(x, 1)(s)$. Let $\psi(s)$ be a C^{∞} function so chosen that $\psi(s) \equiv 0$ for $|s| \geq d$, $\psi(s) \equiv 1$ for $|s| \leq 5d/6$, and $0 \leq \psi(s) \leq 1$, and we can choose positive constants C_1 and C_2 independent of d such that $|\psi'(s)| \leq C_1/d$ and $|\phi''(s)| \le C_2/d^2$. Let us assume 2d < l/2. Let $\Phi(x, u)(s) = (s, s^2/2(K\phi(s)u))$ $+ (1 - u\phi(s))k(x), u\xi(s), 0, \dots, 0$, where $\xi(s)$ is an even $(\xi(s) = \xi(-s))$ C^{∞} real-valued function such that $\xi(s) \equiv 0$ for $|s| \le d/6$ and $|s| \ge 2d$, and where $0 \le 1$ $u \le 1$. By this formula there exist A_1 and B_2 such that if $|\xi(s)| \le A_2$ and $d \le B_2$, then $\Phi(x, u)(s) \in D$ for all (x, u, s). $\Phi'(x, u)(s) = (1, sh(x, u, s), u\xi'(s), 0, \dots, 0)$ where $h(x, u, s) = s[Ku\phi(s) + (1 - u\phi(s))k(x)] + (s^2/2)[K - k(x))u\phi'(s)]$. Pick $\varepsilon < 0$ so small that $k(x)^2/(1+\varepsilon)^2 > k_0^2$. There exist A_2 and B_2 such that if $|\xi'(s)| < A_2$ and $d \le B_2$, then $|\Phi'(x,u)(s)|^3 < 1 + \varepsilon$ for all (x,u) and $|s| \le 2d$. $\Phi''(x, u)(s) = (0, m(x, u, s), u\xi''(s), 0, \dots, 0), \text{ where } m(x, u, s) = k(x) + u(K)$ $-k(x)\mu(s)$ and $\mu(s)=[\psi(s)+2s\psi'(s)+(s^2/2)\psi''(s)]$. There exists a positive constant C_3 independent of our choice of d such that $|\mu(s)| \leq C_3$, $|s| \leq l/2$. If $|s| \le 5d/6$ or $|s| \ge d$, then $m(x, u, s) \ne 0$ and hence $\Phi(x, u)(s)$ is nondegenerate. We assume $\xi''(s) \neq 0, 5d/6 \leq |s| \leq d$. This implies $\Phi(x, u)(s)$ is everywhere nondegenerate.

 $k(\Phi(x,u))(s)^2 = k(x,u)(s)^2 = [1+h^2+u^2(\xi')^2]^{-3}[(1+h^2+u^2(\xi')^2)(m^2+u^2(\xi'')^2) - (mh + u^2\xi'\xi'')^2] = [1+h^2+u^2(\xi')^2]^{-3}[m^2+u^2(\xi'')^2 + (mu\xi' - hu\xi'')^2].$ But $m(x,u,s) = k(x) + u[K-k(x)]\mu(s)$, and therefore there exists $u_0 > 0$ such that $m(x,u,s)^2/(1+\varepsilon)^2 > k_0^2$ for $0 \le u \le u_0$;, u_0 is clearly independent of the choice of d and ξ . Set $\xi''(s)^2 = (1+\varepsilon)^2(k_0^2+1)(u_0)^{-2} = \alpha$ for $5d/6 \le |s| \le d$, and let $|\xi''(s)|^2 \le \alpha$ for all other s. Then $u^2\xi''(s)^2/(1+\varepsilon)^2 > k_0^2$ for $5d/6 \le |s| \le d$, $u_0 \le u \le 1$. Hence $|\xi'(s)| \le 2d\alpha$ and $|\xi(s)| \le 4d^2\alpha$. $k(x,u)(s)^2 < m(x,u,s)^2 + u^2\xi''(s)^2 < K^2(1+C_3)^2 + \alpha^2$, and therefore $\int_{-2d}^{2d} k(\Phi(x,u))(s)ds < 4d(K^2(1+C_3)^2+\alpha^2)^{-1/2}$. Let $d < \min(B_1,B_2,A_2/2\alpha,(A_1/4\alpha)^{1/2},(.9)(1/4)(K^2(1+C_3)^2+\alpha^2)^{-1/2})$. Then $|\xi(s)| < A_1,|\xi'(s)| < A_2,k(\Phi(x,u))(s) > k_0$, and $\int_{-2d}^{2d} k(\Phi(x,u))(s)ds < 9/10$. This proves our lemma if we let c = d/6.

Lemma 6.4 (Stretching lemma). Let D be a disc centered at 0, and with radius R < 1 and the usual metric, etc. Let 0 < A < 1, and let $\varphi: [-A, A] \to D$ be a nondegenerate immersion such that $\varphi(0) = 0$, $k(\varphi)(t) > k_0 > 0$, $\int_{-A}^{A} k(\varphi)(t) dt$ < 1 and $t(\varphi)(0) = v_0 \in S^{n-1}$. Pick $\omega \in S^{n-1}$ such that the geodesic (great circular)

< 1 and $t(\varphi)(0) = v_0 \in S^{n-1}$. Pick $\omega \in S^{n-1}$ such that the geodesic (great circular) distance $d_S(v_0, \omega) < \pi/6$. Then we can find a deformation φ_u of φ , $0 \le u \le 3$, such that

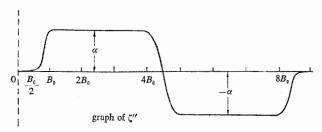
- 1) $\varphi_u(0) = 0$ for all $u, t(\varphi_3)(0) = \omega, \varphi_0(t) = \varphi(t),$
- 2) $\varphi_u(t)$ is nondegenerate for all u and t, and $k(\varphi_u)(t) > k_0$,
- 3) there exists a real number a, 0 < a < A, such that $\varphi_u(t) = \varphi(t)$, $0 \le u \le 3$, $|t| \ge a$,

4) φ_u defines a continuous curve in $C^2([-A, A], D)$,

5)
$$\int_{-1}^{1} k(\varphi_3)(t)dt < L(n) = 2^2(80 + \sqrt{n-1}).$$

Proof. Step 1. Pick coordinates in R^n such that $v_0 = e_1$ and $n(\varphi)(0) = e_2$, and a positive number K such that $K > \sup(1, 2^9k_0, k(\varphi)(0))$. Let us reparametrize φ so that near 0, φ is parametrized by arc length. By applying Lemma 6.3, we can find a deformation $\varphi_u(t)$ of φ , $0 \le u \le 1$, and numbers B and C such that 0 < C < B < A, $\varphi_1(t) = (t, t^2K/2, 0, \cdots, 0)$ for $|t| \le C$, and $\varphi_u(t) = \varphi(t)$ for $|t| \ge B$. Furthermore choose φ_u so that $k(\varphi_u)(t) > k_0$, $\int_{-B}^{B} k(\varphi_1)(t) dt < 1$, and $|\varphi_1(t)| < R/2$ for $0 \le |t| \le B$. $(|\varphi_u(t)| < R)$, of course, for all u and $t \in [-A, A]$.)

Step 2. Let us pick a real number D>0 such that $D<\min(C,(2K)^{-1})$. Let λ be a smooth strictly increasing monotone function on [1, 2] such that $\lambda(1)=0$ and $\lambda(2)=1$. Set $w=(1,w_2,\cdots,w_n)/(1+w_2^2+\cdots+w_n^2)^{1/2}$. But $d_S(v_0,w)<\pi/6$ implies $w_2^2+\cdots+w_n^2<3/4$. Hence $|w_2|<\sqrt{3/2}$. Let $w_2(t)$ be a C^∞ function such that $w_2(0)=0$, $w_2'(t)\equiv w_2$ for $0\le |t|\le B_0$. We can also assume $|w_2'(t)|\le \sqrt{3/2}$, $w_2(t)\equiv 0$ for $|t|\ge 4B_0$, $|w_2(t)|<\sqrt{3}B_0$ and $|w_2(t)|<(B_0)^{-1}$. Pick B_0 so small that $16B_0<\min(R/8,D)$. Finally, let us pick m such that $(2^{m+1}K)^{-1}\le B_0\le (2^mK)^{-1}$; note $m\ge 5$. Let us choose another C^∞ function $\zeta(t)$ such that $\zeta(t)\equiv 0$ for $|t|\le B_0/2$, $\zeta(t)\equiv 0$ for $|t|\ge 9B_0$, $\zeta(t)$ is even, $\zeta''(t)=K2^{m-4}=\alpha$ for $B_0\le |t|\le 4B_0$, and $|\zeta''|\le K2^{m-4}$ elsewhere. Furthermore, we can choose ζ such that $|\zeta'|\le (8B_0)(K)(2^{m-4})=B_0K2^{m-1}\le 1/2$.



We now set $\varphi_u(t) = (t, t^2K/2 + \lambda(u)w_2(t), \lambda(u)\zeta(t), 0, \dots, 0)$ for $|t| \leq D$, $1 \leq u \leq 2$. For $|t| \geq 9B_0$, $\varphi_u(t) = \varphi_1(t)$. $\varphi_u'(t) = (1, Kt + \lambda w_2'(t), \lambda(u)\zeta'(t), 0, \dots, 0)$ and $\varphi_n''(t) = (0, K + \lambda w_2'', \lambda \zeta'', 0, \dots, 0)$. By our choice of w_2 and ζ we see $\varphi_u(t)$ is nondegenerate. Note that $1 \leq |\varphi_u(t)|^2 < 1 + (1/2 + \sqrt{3/2})^2 + 1 < 4 = 2^2$. $k(\varphi_u)(t)^2 \geq [(K + \lambda w_2'')^2 + (\lambda \zeta'')^2]/|\varphi_u'(t)|^6 > 2^{-6}[(K + \lambda w_2'')^2 + (\lambda \zeta'')^2]$. Now $|w_2''(t)| < 1/B_0 < 2^{m+1}K$. Look at u_0 such that $\lambda(u_0) = 2^{-(m+2)}$. Hence for $1 \leq u \leq u_0$, $\lambda(u_0) \leq 2^{-(m+2)}$ and therefore $|\lambda(u)w_2''(t)| < K/2$. So $k(\varphi_u)(t)^2 > K^2/2^{10} = (K/2^5)^2 > k_0^2$. If $|t| \leq B_0$ or $|t| \geq 4B_0$, then $w_2''(t) = 0$ and $k(\varphi_u)(t)^2 > K^2/2^6 > k_0^2$. Finally, let $B_0 \leq |t| \leq 4B_0$, and $\lambda(u) \geq (2)^{-(m+2)}$. Then $\lambda(u)\zeta''(s) \geq (2)^{-(m+2)}K2^{m-2} = K2^{-6}$. Therefore $k(\varphi_u)(t)^2 > (K/2^9)^2 > k_0^2$. Let

us estimate
$$J = \int_{-9B_0}^{9B_0} k(\varphi_2)(t)dt$$
.

$$\begin{split} J &\leq \int_{-9B_0}^{9B_0} (|\varphi_2'(t)|^2 |\varphi_2''(t)|^2)^{1/2} dt \leq 2 \int (K + w_2''(t)^2 + \zeta''(t)^2)^{1/2} \\ &\leq 2 \int ([K + 1/B_0]^2 + K^2 2^{2m-8})^{1/2} \leq 2K \int (1 + (2^{m+1})^2 + (2^{m-4})^2)^{1/2} \\ &< K 2^{m+4} 18B_0 \leq K 2^{m+4} 18(K 2^m)^{-1} = (9)(2^b) \;. \end{split}$$

Note $\varphi_u(t) = \varphi_1(t) + \lambda(u)(0, w_2(t), \zeta(t), 0, \dots, 0)$ for $|t| \le D$. $|\varphi_u(t)| \le R/2 + R/4 < R$, because $16B_0 < \min(R/8, D), |w_2(t)| \le \sqrt{3}B_0$ and $|\zeta(t)| \le (8B_0)(1/2)$. Step 3. Let us restrict ourselves to $\varphi_2(t) = (t, (t^2/2)K + tw_2, 0, \dots, 0)$ for $|t| \le B_0/2$. Now $w_2^2 + \dots + w_n^2 < 3/4$. Let us pick $B_1 = B_0/8$ and let $w_k(t)$, $3 \le k \le n$, be C^{∞} functions such that $w_k'(t) \equiv w_k$ for $|t| \le B_1$, $w_k(t) \equiv 0$ for $|t| \ge 4B_1$, $w_k(0) = 0$, $\sum (w_k'(t))^2 < 3/4$, $|w_k''(t)| < (B_1)^{-1}$, and $\sum_{k=3}^{n} w_k(t)^2$

 $\leq (3/4) \, (B_0/2) < (R/4)^2$. Let $\lambda(u)$ be a strictly increasing monotone C^{∞} function on [2, 3] such that $\lambda(2) = 0$ and $\lambda(3) = 1$. Let $\varphi_u(t) = (t, t^2K/2 + tw_2, \lambda(u)w_3(t), \cdots, w_n(t)\lambda(u))$. Then $\varphi'_u(t) = (1, tK + w_2, \lambda w'_3(t), \cdots, \lambda w'_n(t))$ and $\varphi''_u(t) = (0, K, \lambda w''_3, \cdots, \lambda w''_n)$. Hence $\varphi_u(t)$ is nondegenerate, and $|\varphi_u(t)| < 3R/4 + R/4 = R$. $1 \leq |\varphi'_u(t)|^2 \leq 1 + (Kt + w_2)^2 + 3/4 < 4 = (2)^2$. Hence $k(\varphi_u)(t)^2 > (K/8)^2 > (k_0)^2$. Look at

$$J = \int_{-4B_1}^{4B_1} k(\varphi_3)(t)dt < 2 \int (K^2 + \sum w_i''(t)^2)^{1/2} < 2 \int (K^2 + (B_1)^{-2}(n-2))^{1/2}$$

$$\leq 2 \int (K^2 + (n-2)K^2(2)^{2m+2})^{1/2} \leq 2K2^{m+1}(n-1)^{1/2}B_0 < 4\sqrt{n-1}.$$

Hence $\int_{-4}^{4} k(\varphi_3)(t)dt < 1 + 1 + 32.9 + 4\sqrt{n-1}$, which completes the proof of this lemma.

7. Odds and ends

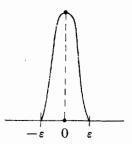
Lemma 7.1. Let X be a compact set, $\phi: X \to R$ be a continuous function such that $\phi(x) > 0$ for all $x \in X$, and K be a fixed positive number. Then there exists a continuous function $\lambda: X \to \mathscr{C}^{\infty}(I, I), I = [0, 1]$, such that $\lambda(x)(0) = 0$, $\lambda(x)(1) = 1$, $\lambda'(x)(t) > 0$, $\lambda'(x)(0) = \phi(x)/K$, and $\lambda(x)(t) = t$ if $\phi(x) = K$.

Proof. Let us set $\zeta(x) = \psi(x)/K$. Since X is compact, there exists s_0 , $0 < t_0 < 1$, such that $0 < \zeta(x)s_0 < 1$. Set

$$g(x)(s) = \begin{cases} s\zeta(x), & -1 \le s \le s_0, \\ 1 + (s_0\zeta(x) - 1)(s - 1)(s_0 - 1)^{-1}, & s_0 \le s \le 2. \end{cases}$$

Then g(x)(0) = 0, g(x)(1) = 1, and g(x) is continuous and is C^{∞} everywhere except at s_0 ; in fact, $g: X \to \mathcal{C}^0([-1, 2], R)$ is continuous. Extend g(x) to all

of R by making it 0 outside [-1,2]. Denote this extension also by g(x), and note that $g(x) \in L^p(R)$, $1 \le p \le \infty$, and that $g: X \to L^p(R)$ is continuous. Let $0 < \varepsilon < \min(s_0/2, (1-s_0)/2)$. Let $\varphi_{\varepsilon}(t) \ge 0$ be the usual C^{∞} approximate identity, $\varphi_{\varepsilon}(t) = \varphi_{\varepsilon}(-t)$, support $(\varphi_{\varepsilon}) \subseteq [-\varepsilon, \varepsilon]$ and $\int_{-\infty}^{\infty} \varphi_{\varepsilon}(t) dt = 1$.



Set $\lambda(x)(t) = (g(x)_*\varphi_{\iota})(t) = \int_{-\infty}^{\infty} g(x)(s)\varphi_{\iota}(t-s)ds$. Then by our choice of g and

the usual properties of the convolution, we can see that $\lambda(x)$ is C^{∞} , it has all the desired properties, and $\lambda: X \to \mathcal{C}^k(I, I)$ is continuous for each k (this last λ is $g_*\varphi_* | [0, 1]$).

Corollary 7.2. Let X be compact, K > 0 a real number, and $\psi_i \colon X \to R$, i = 1, 2, continuous real valued functions such that $\psi_1(x) > 0$. Then there exists a continuous function $\lambda \colon X \to \mathscr{C}^{\infty}(I, I)$ such that $\lambda(x)(0) = 0$, $\lambda(x)(1) = 1$, $\lambda'(x)(0) = \psi_1(x)/K$, $\lambda''(x)(0) = \psi_2(x)$, $\lambda'(x)(t) > 0$, and $\lambda(x)(t) = t$ provided $\psi_1(x) = K$ and $\psi_2(x) = 0$.

Proof. Let $\overline{\lambda}(x)(t)$ be the functions constructed by Lemma 7.1. Set $\lambda(x)(t) = \overline{\lambda}(x)(t) + \varphi(t)t^2/2[\psi_2(x) - \overline{\lambda}(x)''(0)]$ where φ is a C^{∞} function, $0 \le \varphi \le 1$, $\varphi(0) = 1$, $\varphi(t) \equiv 0$ for $t \ge \varepsilon$, $\varphi'(0) = 0$, $|\varphi'(t)| < 2/\varepsilon$, and we will choose ε , $0 < \varepsilon < 1$, as follows:

$$\lambda'(x)(t) = \overline{\lambda}(x)'(t) + [t\varphi(t) + (t^2/2)\varphi'(t)](\psi_2(x) - \overline{\lambda}(x)''(0)).$$

Hence we can find a number B > 0 such that if $0 < \varepsilon < B$, then $\lambda'(x)(t) > 0$. Let us choose ε so small that $0 < \varepsilon < B$. Then $\lambda(x)(t)$ is the desired family of curves.

Remark. Let g be a Riemann metric on R^u , X a compact set, $\gamma: X \to C^2([0,1], R^n)$ a continuous map such that $\gamma(x)$ is g-nondegenerate for all $x \in X$, and $f(t), -1 \le t \le 0$, be another g-nondegenerate curve. Assume $f(0) = \gamma(x)(0)$, $t(f)(0) = t(\gamma(x)(0), n(\gamma(x))(0) = n(f)(0)$ and $k_g(f)(0) = k_g(\gamma(x))(0)$ for all $x \in X$. By applying Corollary 7.2 we can find $r: X \to \mathscr{C}^\infty(I, I)$, r(x)(t), reparametrization of the $\gamma(x)(t)$ with the following properties:

- a) r(x)(t) = t if $f'(0) = \gamma(x)'(0)$ and $f''(0) = \gamma(x)''(0)$,
- b) $f'(0) = (d\gamma(x)/d\tau(x))(0)$ and $f''(0) = (d^2\gamma(x)/(d\tau(x))^2(0))$, where $\tau(x) = r(x)(t)$ is the new parameter.

Theorem 7.3. Let E_0 be as in § 2, and pick $e_0 \in E_0$. Then $\pi_k(E_0, e_0) = 0$, $0 \le k < \infty$.

Theorem 7.4. Let X be a compact set, and $f: X \to E_0$ a continuous map. Then f is homotopic to a constant map.

We note that Theorem 7.4 implies Theorem 7.3 so we now prove Theorem 7.4.

Proof. Let W be a neighborhood of x_0 , which is the center of geodesic normal coordinates (x_1, \dots, x_n) so chosen that $e_1 = \partial/\partial x_1(0) = t_0$ and $e_2 =$ $\partial/\partial x_2(0) = n_0$. Let us reparametrize the f(x)(t) such that for $0 \le t \le S < 1$, $f(x)(t) \in W$ and f(x)(t) is parametrized by arc length for $0 \le t \le S$ (S > 0). Therefore by Taylor's theorem, $f(x)(t) = te_1 + (t^2k_0/2)e_2 + a(x)(t)$, where $k_0 =$ $k_g(f(x))(0), e_1 = t_0 = t(f(x))(0), e_2 = n_0 = n(f(x))(0), \text{ and } a(x)(t) = \sum_{i=1}^n a_i(x)(t)e_i$ where $a_i(x)(t)$ satisfy the hypothoses of Sublemma 6.2 if we set $a_i(x)(-t) =$ $a_i(x)(t)$ [because $a_i(x)(0) = a_i'(x)(0) = a_i''(x)(0) = 0$]. Hence we can find $0 < S_0 \le S$ such that $te_1 + t^2k_0/2e_2 + ua(x)(t)$ is nondegenerate for all t, $0 \le t \le S_0$ and $u, 0 \le u \le 1$. Let $\lambda(u)$ be a C^{∞} function which is strictly monotone decreasing, λ : $[0, 1/2] \rightarrow R$, such that $\lambda(0) = 1$, $\lambda(1/2) = S_0/2$. Set f(x, u)(t) $f(x)(t\lambda(u))$. Hence $f(x, 1/2)(t) = f(x)(tS_0/2) = (tS_0/2)e_1 + ((tS_0/2)^2k_0/2)e_2 +$ $a(x)(tS_0/2)$ because $2S_0/2 = S_0$. Let λ : $[1/2, 1] \rightarrow R$ be another smooth monotonically decreasing function such that $\lambda(1/2) = 1$ and $\lambda(1) = 0$. Set f(x, u)(t) $= (tS_0/2)e_1 + (tS_0/2)^2(k_0/2)e_2 + \lambda(u)a(x)(tS_0/2), 1/2 \le u \le 1$. This defines the desired homotopy between f and the constant map $f(x, 2)(t) = (tS_0/2)e_1 + t$ $(tS_0/2)^2(k_0/2)e_2$, $0 \le t \le 2$.

8. Proof of the main theorem

Let $(x,v,k) \in V$, $v=(t,n) \in T(X)_x \times T(X)_x$, g(x)(t,t)=g(x)(n,n)=1 and g(x)(t,n)=0. Let k_1 be a real number $0 < k_1 < \min{(k,C(n)^{-1}B(n)^{-1})}$ where $B(n)=2^{n+5}(80+\sqrt{n-1})$ and $C(n)=18n/\sqrt{n}$, W be the domain of x-centered geodesic coordinates $(x_1,\cdots,x_n),g_F=\sum{\delta_{ij}dx^idx^j}$ be the flat metric on W, and t_F,n_F , and k_F be the unit tangent vector, the principal normal vector, and the geodesic curvature computed with g_F . We adopt the rest of the notation of § 4. Let W_0 be the disc $\sum{(x_i)^2 < (2R)^2R < 1}$ such that if γ is a g-nondegenerate curve in W_0 and $k_g(\gamma)(t) > k_1$, then γ is g_F -nondegenerate and $k_F(\gamma)(t) > 2k_1/3$. Furthermore, if γ is g_F nondegenerate in W_0 and $k_F(\gamma)(t) > 2k_1/3$, then γ is g-nondegenerate and $k_g(\gamma)(t) > k_1/3$. Let $D = \{x \in W_0 \mid \sum{(x_i)^2 < (R/2)^2(\sqrt{n}/2n)^2}\}$ and $V_0 = D \times V_2 \times (k_1, \infty)$. V_0 will be the desired neighborhood of (x,v,k). We will now show that $p: p^{-1}(V_0) \to V_0$ satisfies strong property P.

Let I^q be a q-cube, $F^{q-1} \subseteq I^q$ the zero faces, and $\varphi \colon I^q \to V_0$ and $\varphi \colon F^{q-1} \to p^{-1}(V_0)$ continuous maps such that $p \circ \psi(c) = \varphi(c)$ for all $c \in F^{q-1}$. Let $\varphi(c) = (x(c), t(c), n(c), k(c))$.

If α is the map of Proposition 4.1, then set $\alpha\varphi(c)=(x(c),t_F(c),n_F(c),k_F(c))$. Note that we do not have to "lift" (φ,ϕ) but only a deformation of (φ,ϕ) ; see Definition 3.6 and Proposition 3.7.

- Step 1. Look at $\psi(c)(t)$, $0 \le t \le 2$. We see, by the compactness of F^{q-1} , that there exists a number t_q , $0 < t_q < 2$, such that $\psi(c)(t) \in D$ and $k_q(\psi(c))(t) > k_1$ for all $t \in [t_q, 2]$ and $c \in F^{q-1}$. By a deformation we can reparametrize $\psi(c)(t)$ so that $t_q = 1/2$, so we can assume $t_q = 1/2$. Since the group E(n) of Euclidean motions is connected, we can find a map $M: I^q \to E(n)$ such that $M(c)((\psi(c)(1), t_F(\psi(c))(1), n_F(\psi(c))(1)) = (0, e_1, e_2)$ where $e_1 = (1, 0, \dots, 0)$ and $e_2 = (0, 1, 0, \dots, 0)$. Let $m(c)(t) = M(c)(\psi(c)(t))$, $t \in [1/2, 2]$. Then $|m(c)(t)| < R\sqrt{n}/(2n)$, m(c)(t) is g_F -nondegenerate, and $k_F(m(c))(t) > 2k_1/3$. Applying Theorem 6.1 to the curves m(c)(t) (with 1 replacing 0, etc.), we can find a continuous deformation $m_u(c)(t)$, $0 \le u \le 1$, of $m(c)(t)[m_0(c)(t) = m(c)(t)]$ and two numbers S and T, 0 < S < T < 1/2, such that
- 1) $|m_u(c)(t)| < R\sqrt{n}/(2n)$, $t_F(m_u(c))(1) = e_1$, $n_F(m_u(c))(1) = e_2$, $m_u(c)(1) = 0$, and $k_F(m_u(c))(t) > 2k_1/3$ for $0 \le u \le 1$, $t \in [1/2, 2]$, and $c \in F^{q-1}$,
 - 2) $m_u(c)(t) = m(c)(t)$ for $|t-1| \ge T$, $0 \le u \le 1$, $c \in F^{q-1}$,
- 3) $m_1(c)(t) = m_1(c')(t) = f(t)$ where f(t) is C^{∞} , for |t-1| < S, and $c, c' \in F^{q-1}$, and
- 4) the path $t_F(f(t))$, 1 < t < 1 + S, passes through each of the 2^n -vertices of the inscribed cube, $k_F(f)(1) > B(n)^{-1}C(n)^{-1}$, and $\int_{-\infty}^{S+1} k_F(f)(t)dt < B(n)$.

Let $\tau: F^{q-1} \to \mathscr{C}^{\infty}([1/2, 2], [1/2, 2])$ be a continuous map such that $\tau(c)(t) = t, 1/2 \le t < 1 - T, \tau(c)(1) = 1, \tau(c)(S+1) = 3/2, \tau(c)(2) = 2, \tau(c)'(t) > 0.$

If $m_1(c)(\tau)$ denotes $m_1(c)$ parametrized by $\tau(c)(t)$, then $t_F(m_1(c))(\tau)$ is parametrized by the reduced arc length for $1 \le \tau \le 3/2$. Let $m_{1+u}(c)(t) = m_1(c)(u\tau(c)(t) + (1-u)t)$, $0 \le u \le 1$, and let $m_2(c)(t)$ be $m_1(c)$ parametrized by $\tau(c)$. Hence $m_2(c)(t)$ is defined for $1/2 \le t \le 2$, and the curve $t_F(m_2(c)) \mid [1, 3/2]$ is parametrized by the reduced arc length. Let

$$\psi_u(t) = \begin{cases} \psi(c)(t) , & 0 \le t \le 1/2 , \\ M(c)^{-1}(m_u(c)(t)) , & 1/2 \le t \le 2, 0 \le u \le 2 . \end{cases}$$

 $\phi_u(t)$ defines a continuous deformation of (φ, ϕ) , and it is $\phi_2(c)(t)$ which we will try to lift.

Step II. Let $T_0(S^{n-1})$ be the unit tangent bundle over the unit sphere $S^{n-1} \subseteq \mathbb{R}^n$. Recall $T_0(S^{n-1})$ is diffeomorphic to the Stiefel manifold V_2 by reviewing the point $x \in S^{n-1}$ as the first vector of a 2-frame and $v \in T_0(S^{n-1})_x$ as the second vector. Let $\tilde{E}_0 = [\lambda \colon [3/2, 2] \to S^{n-1} \mid \lambda$ is an immersion, $\lambda(3/2) = t_F(f)(3/2)$, $t(\lambda)(3/2) = n_F(f)(3/2)$] where $f(t) = m_2(c)(t)$, $1 \le t \le 3/2$. Define $\pi_0 \colon \tilde{E}_0 \to T_0(S^{n-1})$ by $\pi_0(\lambda) = (\lambda(2), t(\lambda)(2))$. Let $\psi_S \colon F^{q-1} \to \tilde{E}_0$ be a continuous map defined by $\psi_S(c)(t) = t_F(m_2(c))(t)$, $3/2 \le t \le 2$, and $\varphi_S \colon I^q \to V_2$ be the

continuous map defined by $\varphi_{\mathcal{S}}(c) = (M(c)t_F(c), M(c)n_F(c))$. We see that $\pi_0 \circ \psi_S(c) = \varphi_S(c)$ for $c \in F^{q-1}$. By Smale's theorem [11], we can find Ψ_S extending $\psi_{\mathcal{S}}$ to all I^q such that $\pi_0 \circ \Psi_{\mathcal{S}} = \varphi_{\mathcal{S}}$. We now apply Lemma 7.1, and reparametrize $\Psi_S(c)(t)$, $3/2 \le t \le 2$, so that we can assume $(dt_F(f)(t)/dt)(3/2) =$ $(d\Psi_s(c)(t)/dt)(3/2)$, and we can do this in such a way that we need not reparametrize $\psi(c)(t)$ at all if $c \in F^{q-1}$. Let us define $\lambda(c)(t) = t_F(f)(t)$ for $1 \le t \le 3/2$, and $\lambda(c)(t) =$ the reparametrized $\psi(c)(t)$ for $3/2 \le t \le 2$. Then $\lambda(c)(t) =$ $t_F(m_2(c))(t)$, $c \in F^{q-1}$, $1 \le t \le 2$, $\lambda(c)(t)$ is an immersion $c \in I^q$, $1 \le t \le 2$, $\lambda: I^q \to \mathscr{C}^1([1,2]; S^{n-1})$ is continuous, $\lambda(c)(1) = e_1, t(\lambda(c))(1) = e_2, \lambda(c)(2)$ $= M(c)t_F(c)$, and $t(\lambda(c))(2) = M(c)n_F(c)$. We want to set $\gamma(c)(t+1) =$ $\int \rho(c)(\tau)\lambda(c)(\tau+1)d\tau \text{ where } \rho(c)(\tau) \text{ is } C^1, 0 < \rho(c)(\tau) < 3/(2k_1) \text{ for } 0 \le \tau \le 1,$ $\rho(c)(1) = k_F(c)^{-1}, \ \rho(c)(0) = k_F(f)(1)^{-1}, \ \int_0^1 \rho(c)(t) dt \le R, \ \text{and} \ \gamma(c)(2) = M(c)x(c).$

If we can find such function $\rho(c)(\tau)$ and they depend continuously on $c \in I^q$,

and $\rho(c)(t) = \left| \frac{d}{dt} (m_2(c))(t+1) \right|, 0 \le t \le 1$, for $c \in F^{q-1}$ we would have our

problem solved, by reparametrizing the γ 's so the end points match up and then translating back by $M(c)^{-1}$.

Step III. Let $\mathscr{C}^1(S^1, R)$ be the C^1 -periodic functions from R to R with period 2π . Then $\mathscr{C} = \mathscr{C}^1(S^1, R)$ is a Banach space in the norm $\|\varphi\|_1 = \sup_{0 \le t \le 2\pi} |\varphi(t)| +$ $\sup |\varphi'(t)|$. Let $H^2(S^1, R)$ be the Sobolev space of square integrable periodic functions of period 2π , which possess square integrable weak derivatives f' and f''. Then $H^2(S^1, R) = H$ is a Hilbert space with inner product

$$(f,g) = \int_0^{2\pi} f(t)g(t)dt + \int_0^{2\pi} f'(t)g'(t)dt + \int_0^{2\pi} f''(t)g''(t)dt.$$

By Sobolov's lemma (in this case an easy proposition about the absolute convergence of the Fourier series of f')[1, pp. 165–168] we have a continuous linear injection $i: H \to \mathscr{C}$. Furthermore i(H) is dense in \mathscr{C} . Let $i^*: \mathscr{C}^* \to H^*$ be the formal adjoint, pick $c \in I^q$, and define the following linear functionals on \mathscr{C} : $\alpha(c) = \rho(0), \omega(c) = \rho(1), \mu_i(c) = i$ -th coordinate of $\int_0^1 \rho(t) \lambda(c)(t+1) dt$. It is easy to see that $\alpha(c)$, $\omega(c)$, $\mu_i(c)$, $1 \le i \le n \in C^*$: $I^q \to C^*$ are all continuous, that $\alpha(c)$, $\omega(c)$ and $\mu_i(c)$, $1 \le i \le n$, are linearly independent for each fixed $c \in I^q$, and that $i^*\alpha(c)$, $i^*\omega(c)$ and $i^*\mu_j(c)$, $1 \le j \le n$, are also linearly independent for each $c \in I^q$. Define n + 2 continuous real valued functions on I_q^q by: $y_j(c) = j$ -th coordinate of M(c)x(c), $1 \le j \le n$, $A(c) = k_F(f)(1)^{-1}$, and $\Omega(c) = k_F(c)^{-1}. \text{ Let } P = \left\{ \rho \in H \mid 0 < \rho(t) < 3/(2k_1) \text{ for } 0 \le t \le 1, \int_0^1 \rho(t) dt < R \right\}.$

Then P is an open convex set. We now apply Lemma 5.1 and find for each $c \in I^q$ an element $\rho_c \in P$ such that $y_i(c) = \mu_i(c)(\rho), 1 \le i \le n, \alpha(c) = A(c)(\rho)$ and $\omega(c) = \Omega(c)(\rho)$. Therefore the curve $\gamma(c)(t+1) = \int_0^t \rho_c(\tau)\lambda(c)(\tau+1)d\tau$ has the following properties: $\gamma(c)(2) = M(c)x(c), t_F(\gamma(c))(2) = M(c)t_F(c), n_F(\gamma(c))(2) = M(c)n_F(c), k_F(\gamma(c))(1) > (2/3)k_1, 1 \le t \le 2, k_F(\gamma(c))(2) = k_F(c), t_F(\gamma(c))(1) = t_F(f)(1), n_F(\gamma(c))(1) = n_F(f)(1), \gamma(c)(1) = f(1) = 0, k_F(\gamma(c))(1) = k_F(f)(1)$. Let $P_c = \left\{ \rho \in C \mid 0 < \rho(t) < (2/3)k_1, t \in [0, 1]; \left| \int_0^\tau \rho(t)\lambda(c)(t+1)dt \right| \le R, \tau \in [0, 1] \right\}$. P_c is convex, and $P \subseteq P_c$. For each $c \in F^{q-1}$ let $p(c)(t) = |m_2(c)'(t+1)|, 0 \le t \le 1$. Then $p: F^{q-1} \to \mathcal{C}^1([0, 1], R)$ is continuous, and $m_2(c)(t+1) = \int_0^t \rho(c)(\tau)\lambda(c)(\tau+1)d\tau$. We want to extend each p(c)(t) to S^1 (i.e., to $[0, 2\pi]$ so that it is C^1 -periodic). It is clear that this can easily be done. Hence assume we have defined a continuous map $p: F^{q-1} \to \mathcal{C}^1(S^1, R) = \mathcal{C}$ such that $p(c)(t) = |m_2(c)'(t+1)|, 0 \le t \le 1$.

We will now quote two facts; the first, Lemma 8.1 is a restatement of the Gram-Schmidt process, and its proof follows word for word the usual proof, the second, Theorem 8.2 is our main abstract analytic lemma, which we prove in § 9.

Lemma 8.1. Let H and C be respectively a Hilbert space and a Banach space, $i: H \to C$ be a continuous linear injection, $i^*: C^* \to H^*$ be its formal adjoint, X be a topological space, $\varphi_i: X \to C^*, 1 \le i \le k$, be k continuous maps such that $\varphi_i(x), \dots, \varphi_k(x)$ and $i^*\varphi_i(x), \dots, i^*\varphi_k(x)$ are linearly independent for each $x \in X$, $P: H^* \to H$ be the duality isomorphism, and $y_i: X \to R$ be k continuous real valued functions. Then we can find $\Phi_i: X \to C^*, Y_i: X \to R$, $1 \le i \le k$, continuous functions with the following properties:

- a) $\Phi_1(x), \dots, \Phi_l(x)$ for each $x \in X$ span the same subspace of C^* as $\varphi_1(x), \dots, \varphi_l(x)$ for each $l, 0 < l \le k$.
 - b) If $F_i(x) = P(i^*(\Phi_i(x)), \text{ then } \langle F_j(x), F_k(x) \rangle = \delta_{jk} \text{ for all } x.$
 - c) $\varphi_i(x)(\rho) = y_i(x), 1 \le i \le k$, if and only if $\Phi_i(x)\rho = Y_i(x), 1 \le i \le k$.

Theorem 8.2. Let H be a Hilbert space, C a Banach space, $i: H \to C$ a continuous linear inclusion, $i^*: C^* \to H^*$ its formal adjoint, $D: H^* \to H$ the duality map, $P \subseteq H$ an open convex set, I^n the n-cube, and F^{n-1} the union of zero faces.

- a) Let $v_j^*: I^n \to C^*$ be continuous maps $1 \le j \le k$, set $v_j = D(i^*(v_j^*))$, and assume $\langle v_i(x), v_j(x) \rangle = \delta_{ij}, x \in I^n$.
 - b) Let $h_i: I^n \to R$, $1 \le j \le k$, be continuous real valued functions.
- c) For each $x \in I^n$ a convex set $P_x \subseteq C$ is given such that $P \subseteq P_x$. Assume there exists $p_x \in P$ such that $\langle p_x, v_j(x) \rangle = h_j(x), 1 \leq j \leq k$.

d) Let $p: F^{n-1} \to C$ be a continuous map such that $p(x) \in P_x$ and $v_j^*(x)(p(x)) = h_j(x)$ for each $x \in F^{n-1}$ and $1 \le j \le k$. Then we can find a strong admissible deformation φ_t of I^n and a continuous map $\rho: I^n \to C$ extending $p^n: F^{n-1} \to C$ with the following properties:

i) $\rho(x) \in P\varphi_1(x)$ for all $x \in I^n$.

 $ii) \quad v_i^*(\varphi_1(x))(\rho(x)) = h_i(\varphi_1(x)), x \in I^n, 1 \le j \le k.$

We apply this to the case where $H=H^2(S^1,R), C=C^1(S^1,R), i=$ the Sobolev inclusion, and $P, P_x(P_c)$ and $p: F^{q-1} \to C$ are defined as in the discussion preceding Lemma 8.1. We take $\alpha, \beta, \mu_j, 1 \le j \le n$, as our families of linear functionals, and $A, \Omega, y_j, 1 \le j \le n$, as our families of continuous functions. Hence we find a strong admissible deformation ν_t of I^q and an extension ρ of $p: F^{q-1} \to C$ with the following properties: Set

$$\gamma_0(c)(t+1) = \int_0^t \rho(c)(\tau)\lambda(\nu_1(c))(\tau+1)d\tau.$$

Then $t_F(\gamma_0(c))(1) = t_F(f)(1)$, $n_F(\gamma_0(c))(1) = n_F(f)(1)$, $k_F(\gamma_0(c))(1) = k_F(f)(1)$, $t_F(\gamma_0(c))(2) = M(\nu_1(c))$, $t_F(\nu_1(c))$, $n_F(\gamma_0(c))(2) = M(\nu_1(c))$, $n_F(\nu_1(c))$, $k_F(\gamma_0(c))(2) = k_F(\nu_1(c))$, $\gamma_0(2) = M(\nu_1(c))x(\nu_1(c))$, $k_F(\gamma_0(c))(t) > 2k_1/3$, $t \in [1, 2]$, and $|\gamma_0(c)(t)| < R$. We now apply Corollary 7.2 in order to reparametrize $\gamma_0(c)(t)$ so that $\gamma_1(c)'(1) = f'(1)$ and $\gamma_1(c)''(1) = f''(1)$, where $\gamma_1(c)(t)$, $t \in [1, 2]$, are the reparametrized $\gamma_0(c)$, and we do not reparametrize $\gamma_0(c)(t)$ at all if $\gamma_0(c)'(1) = f'(1)$ and $\gamma_0(c)''(1) = f''(1)$. Let $\gamma_1(c)(t)$ denote the suitably reparametrized $\gamma_0(c)(t)$. Pick a retract $\Omega: I^q \to F^{q-1}$, and define

$$\gamma_2(c)(t) = \begin{cases} m_2(\Omega(c))(t) , & 1/2 \le t \le 1 , \\ \gamma_1(c)(t) , & 1 \le t \le 2 . \end{cases}$$

Then set $\gamma_3(c)(t) = M(\nu_1(c))^{-1}\gamma_2(c)(t)$. Finally set

$$\Psi(c)(t) = \begin{cases} \psi(\Omega(c))(t) , & 0 \le t \le 1/2 , \\ \gamma_3(c)(t) , & 1/2 \le t \le 2 . \end{cases}$$

Note that $|\gamma_3(c)(t)| < 2R$, $k_F(\gamma_3(c))(t) > 2k_1/3$, $t_F(\gamma_3(c))(2) = t_F(\nu_1(c))$, $n_F(\gamma_3(c))(2) = n_F(\nu_1(c))$, $k_F(\gamma_3(c))(2) = k_F(\nu_1(c))$, and $\gamma_3(c)(2) = x(\nu_1(c))$. Hence $\gamma_3(c)$ is gnondegenerate and has the correct terminal data. $\Psi: I^q \to E_0$ is continuous, $\Psi | F^{q-1} = \psi_2$ (see end of Step I), and $p \circ \Psi = \varphi \circ \nu_1$.

9. Proof of Theorem 8.2

Step I. For each $x \in I^n$, pick $p_x \in P$ such that $\langle p_x, v_j(x) \rangle = h_j(x), 1 \le j \le k$. Look at the expression

$$p_{x'}(x) = p_{x'} - \sum\limits_{i=1}^k (\langle p_{x'}, v_i(x) \rangle - h_i(x)) v_i(x)$$
 .

 $p_{x'}(x)$ is continuous in x, and there exists $\varepsilon_{x'} > 0$ such that if $|x - x'| < \varepsilon_{x'}$, then $p_{x'}(x) \in P$, because P is open. Then $\langle p_{x'}(x), v_j(x) \rangle = h_j(x), 1 \le j \le k$, and therefore $p_{x'}(x)$ has all the desired properties in a neighborhood of x'. Since these $\varepsilon_{x'}$ neighborhoods about x' form an open covering of the cube I^n , by the Lebesgue covering lemma we can find an integer N > 1 such that any cube with side of length = 1/N must lie in one of the $\varepsilon_{x'}$ balls. Let $B_{i_1, \dots, i_n} = \{(x_1, \dots, x_n | i_k/N \le x_k \le i_k + 1/N\}, 0 \le i_k \le N - 1$. On each of the B_{i_1, \dots, i_n} we have one of the $p_{x'}(x)$ defined, call it $p_{i_1, \dots, i_n}(x)$. Hence we have N^n boxes, and N^n "good" functions.

Step II. Let us construct the $\varphi_t: I^n \to I^n$ as follows. Let $\varphi_t(x_1, \dots, x_n)_k$ denote the k-th coordinate of $\varphi_t(x)$.

a) If $t/3 \le x_k \le 1 - t/3$ for all $k, 1 \le k \le n$, then we set

$$\varphi_t(x_1, \cdots, x_n)_k = i_k/N$$

for

$$t/3 + i_k(1 - 2t/3)/N - t/(9N) \le x_k \le t/3 + i_k(1 - 2t/3)/N + t/(9N),$$

and

$$\varphi_t(x_1, \dots, x_n)_k = i_k/N + \{x_k - [t/3 + i_k(1 - 2t/3)/N + t/(9N)]\}[9/(9 - 8t)]$$
 for

$$t/3 + i_k(1 - 2t/3)/N + t/(9N) \le x_k \le t/3 + (i_k + 1)(1 - 2t/3)/N - t/(9N)$$
.

A direct calculation shows $\varphi_0 = \mathrm{id}$, and φ_t is continuous and well-defined on the inside cube $C_t = \{(x_1, \dots, x_n | t/3 \le x_k \le 1 - t/3\}$.

b) Let us fix t. Let $T_{k,0,t} = \{(x_1, \dots, x_n) | x_k = ts/3, 0 \le s \le 1, \text{ and } ts/3 \le x_t \le 1 - ts/3, 0 \le s \le 1, \text{ for } l \ne k\}, \text{ and } T_{k,1,t} = \{(x_1, \dots, x_n) | x_k = 1 - ts/3, 0 \le s \le 1, \text{ and } ts/3 \le x_t \le 1 - ts/3 \text{ for } l \ne k, 0 \le s \le 1\}.$ The cube I^n is broken up into the inner cube C_t and the 2n "trapazoids" $T_{k,t,t}$, i = 0, 1. We now define φ_t on $T_{k,0,t}$. If $x \in T_{k,0,t}$, set $\varphi_t(x_1, \dots, x_n)_k = 0$. Let $x_k = St/3$. Then $\varphi_t(x_1, \dots, x_n)_j = i_j/N$ if

$$St/N + (i_f/N)(1 - 2St/3) - St/(9N)$$

$$\leq x_f \leq St/3 + (i_f/N)(1 - 2St/3) + St/N,$$

and

$$\varphi_t(x_1, \dots, x_n)_j = i_j/N + [x_j - St/3 + i_j(1 - 2St/3)/N + St/(9N)][9/(9 - 8St)]$$

if

$$St/3 + (i_j/N)(1 - 2St/3) + St(9N)$$

$$\leq x_j \leq St/3 + (i_j + 1)(1 - 2St/3)/N - St/(9N)$$

for $j \neq k$. It is easy to see that $\varphi_0 = \mathrm{id}$, and φ_t is well-defined and continuous on $C_t \cup T_{1,0,t} \cup \cdots \cup T_{n,0,t}$.

c) We will now extend φ_t to $T_{l,1,t}$, $1 \le l \le n$. Let $x \in T_{k,1,t}$. Then $x_k = 1 - St/3$ for some $S, 0 \le S \le 1$, and $St/3 \le x_j \le 1 - St/3$ for $j \ne k$. Let

$$\varphi_{\iota}(x_{1},\ldots,x_{n}) = \varphi_{\iota}\left(\left[(x_{1},\ldots,x_{n}) - \left(\frac{1}{2},\ldots,\frac{1}{2}\right)\right]\left[\frac{3-2t}{3-2St}\right] + \left(\frac{1}{2},\ldots,\frac{1}{2}\right)\right),$$

where the φ_t on the right is the φ_t defined on C_t . Again a direct calculation shows that this formula makes sense. A further check shows that (φ_t) , $0 \le t \le 1$, define a strong admissible deformation of I^n .

Step III. Note that $\varphi_1(T_{k,0,1}) = I_{k,0}^{n-1}$. We define ρ on $\bigcup_{k=1}^n T_{k,0,1}$ by $\rho(x) = p(\varphi_1(x))$. We immediately see $\rho \mid F^{n-1} = p$. Let us look at the cubes

$$C_{i_1,\dots,i_n} = \{(x_1,\dots,x_n) | 1/3 + i_k/(3N) + 1/(9N)$$

$$\leq x_k \leq 1/3 + (i_k+1)/(3N) - 1/(9N) \}.$$

Since φ_1 maps $C_{i_1,...,i_n}$ homeomorphically onto $B_{i_1,...,i_n}$, we can define ρ on $C_{i_1,...,i_n}$ by the formula $\rho(x) = p_{i_1,...,i_n}(\varphi_1(x))$ for $x \in C_{i_1,...,i_n}$. We will now extend ρ to all C_1 by the following induction hypothesis.

Hypothesis l-1. We assume ρ is defined for all $(x_1, \dots, x_n) \in C_1$ such that $1/3 \le x_k \le 2/3$ for $k=1,\dots,l-1$, and $1/3+i_k/(3N)+1/(9N) \le x_k \le 1/3+(i_k+1)/(3N)-1/(9N)$ for $k=l,\dots,n$. Assume ρ satisfies i) and ii) of the statement of Theorem 8.2 wherever ρ is defined. To show $(l-1)\Rightarrow(l)$, pick $x=(x_1,\dots,x_n)$ such that $1/3\le x_k\le 2/3$ for $k=1,\dots,l$, and $1/3+i_k/(3N)+1/(9N)\le x_k\le 1/3+i_k+1/(3N)-1/(9N)$ for $k=l+1,\dots,n$. If $1/3+i_l/(3N)+1/(9N)\le x_l\le 1/3+i_l+1/(3N)-1/(9N)$, then ρ is already defined on x. If $1/3\le x_l\le 1/3+i_l+1/(9N)$, we see that φ_1 is constant along the line $(x_1,\dots,x_{l-1},1/3+t/(9N),x_{l+1},\dots,x_n)$, $0\le t\le 1$. Hence we can define ρ along this line by the formula

$$\rho(x_1, \dots, x_{l-1}, 1/3 + t/(9N), x_{l+1}, \dots, x_n)$$

$$= (1 - t)\rho(x_1, \dots, x_{l-1}, 1/3, x_{l+1}, \dots, x_n)$$

$$+ t\rho(x_1, \dots, x_{l-1}, 1/3 + 1/(9N), x_{l+1}, \dots, x_n).$$

 ρ is continuous in x and t, and has all the desired properties due to the convexity of the P_x . Set

$$C_{i_l,i_{l+1},...,i_n} = \{(x_1, \dots, x_n) | 1/3 \le x_i \le 2/3, 1 \le i \le l-1, 1/3 + i_k/(3N) + 1/(9N) \le x_k \le 1/3 + (i_k+1)/(3N) - 1/(9N)$$
for $k = l, l+1, \dots, n\}$.

If $1/3 + i_t/(3N) - 1/(9N) \le x_t \le 1/3 + i_t/(3N) + 1/(9N)$, $1 \le i_t \le N - 1$, we look at the line $(x_1, \dots, x_{t-1}, 1/3 + (i_t - 1)/(3N) + 2/(9N) + 2t/(9N)$,

 x_{l+1}, \dots, x_n , $0 \le t \le 1$, which joins $(x_1, \dots, x_{l-1}, 1/3 + i_l/(3N) - 1/(9N), x_{l+1}, \dots, x_n) \in C_{i_l-1, i_{l+1}, \dots, i_n}$ to $(x_1, \dots, x_{l-1}, 1/3 + i_l/(3N) + 1/(9N), x_{l+1}, \dots, x_n) \in C_{i_l, i_{l+1}, \dots, i_n}$. φ_1 is a constant along this line, and hence we can set

$$\rho(x_1, \dots, x_{l-1}, 1/3 + (i_l - 1)/(3N) + 2/(9N) + 2t/(9N), x_{l+1}, \dots, x_n)$$

$$= (1 - t)\rho(x_1, \dots, x_{l-1}, 1/3 + (i_l - 1)/(3N) + 2/(9N), x_{l+1}, \dots, x_n)$$

$$+ t\rho(x_1, \dots, x_{l-1}, 1/3 + i_l/(3N) + 1/(9N), x_{l+1}, \dots, x_n).$$

If $2/3 - 1/(9N) \le x_i \le 2/3$, we again note that φ_1 is constant along the line $(x_1, \dots, x_{l-1}, 2/3 - 1/(9N) + t/(9N), x_{l+1}, \dots, x_n), 0 \le t \le 1$. Set

$$\rho(x_1, \dots, x_{l-1}, 2/3 - 1/(9N) + t/(9N), x_{l+1}, \dots, x_n)$$

= $\rho(x_1, \dots, x_{l-1}, 2/3 - 1/(9N), x_{l+1}, \dots, x_n)$.

It is easy to see that we have now constructed by induction ρ with the desired properties on $C_1 \cup T_{1,0,1} \cup \cdots \cup T_{n,0,1}$. $T_{k,1,1} = \{(x_1, \cdots, x_n) | x_k = 1 - S/3, 0 \le S \le 1, S/3 \le x_j \le 1 - S/3, j \ne k\}$. For $x \in T_{k,1,1}$ we see $x_k = 1 - S/3$ for some k. Set $\lambda_k(x) = [(x_1, \cdots, x_n) - (1/2, \cdots, 1/2)][1/3 - 2S] + (1/2, \cdots, 1/2)$. Then λ_k defines a retraction of $T_{k,1,1}$ onto $T_{k,1,1} \cap C_1$. The λ_k 's agree on the overlaps, so they define a retraction $\lambda: \bigcup_{k=1}^n T_{k,1,1} \to \left(\bigcup_{k=1}^n T_{k,1,1}\right) \cap C_1$. We see immediately that $\varphi_1(x) = \varphi_1(\lambda(x))$ for $x \in \bigcup_{k=1}^n T_{k,1,1}$. Hence we can extend ρ to $T_{k,1,1}, 1 \le k \le n$, by setting $\rho(x) = \rho(\lambda(x))$.

Bibliography

- L. Bers, F. John & M. Schecter, Partial differential equations, Lectures in Applied Mathematics, Vol. III, Interscience, New York, 1964.
- [2] E. A. Feldman, Geometry of immersions. I, Trans. Amer. Math. Soc. 87 (1965) 492-512.
- [3] —, Deformations of closed space curves, J. Differential Geometry 2 (1968) 67-75.
- [4] W. Fenchel, Über Krümmung und Windung geschlossener Raumkurven, Math. Ann. 101 (1929) 238-252.
- [5] —, Geschlossene Raumkurven mit vorgeschriebenem Tangentenbild, Jber. Deutschen Math. Verein 39 (1930) 183-185.
- [6] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962.
- [7] S. T. Hu, Homotopy theory, Academic Press, New York, 1959.
- [8] J. R. Munkres, Elementary differential topology, Annals of Math. Studies No. 54, Princeton University Press, Princeton, 1963.
- [9] R. S. Palais, The homotopy type of infinite dimensional manifolds, Topology 5 (1966) 1-16.
- [10] ----, Foundations of global analysis, Benjamin, New York, 1968.
- [11] S. Smale, Regular curves on Riemmannian manifolds, Trans. Amer. Math. Soc. 87 (1958) 492-512.
- [12] N. Steenrod, The topology of fibre bundles, Princeton University Press, Princeton, 1951.

- D. J. Struik, Lectures on classical differential geometry, Addison-Wesley, Read-[13]
- ing, Mass., 1950.
 [14] H. Whitney, On regular closed curves in the plane, Compositia Math. 4 (1937) 276-284.

GRADUATE DIVISION CITY UNIVERSITY OF NEW YORK