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1. Intreduction

Let X be a connected Riemannian manifold of dimension » > 3. By a non-
degenerate curve we mean a C* immersion y of the interval I or the circle C
into X, such that the square of the geodesic curvature k,(y)* never vanishes.
By forcing the geodesic curvature to be positive we are able to associate with
7 a moving orthonormal 2-frame (¢(y)(?), n(y)(®)), t()(D), n()()eT(X),,, along
v, where #(;)(¢) is the unit tangent to y, and r(y)(¥) is the principal normal;
these all will be discussed in more detail in the next section. We can also as-
sociate with y the continuous positive function k,(y)(r) given by the geodesic
curvature. Let 7,: V,(X) — X be the Stiefel bundle of orthonormal two frames
constructed from T(X). Thus, we can associate with 7, a curve o(y)(f) =
(®, 1O, n(N®), k,()(9) in the bundle z: ¥V — X where V = V,(X) X R*
(R* being the positive reals) which is a cross-section over y. Let us pick 6, ¢ C,
and v, = (%, &, Ny, ko) € V. Let N, be the nondegenerate immersions y of the
circle C into X, such that ¢(y)(6,) =v,. Our main theorem states that ¢, which
associates with each y ¢ Ny a loop ¢(y) in V based at v,, in a weak homotopy
equivalence, and hence by Whitehead’s theorem a homotopy equivalence
(provided N, has a suitable topology). Hence we see that the arc-components
of N, (nondegenerate regular homotopy classes) are in a one-one correspon-
dence with the elements of 7,(V,(X) X R*,v,) = m,(2,(X), (x,, 1y, 71)). In the
case where X = R?, with the Euclidean (flat) metric we recover the main
theorem of [3].

2. Definitions and an outline of the paper

Let X be a Riemannian manifold of dimension >3, g its Riemann metric,
and D the Riemannian connection (covarient derivative) induced by g (see [6]).
Let y: I — X be an immersion, ¢ parametrize the interval [a, b} = I, 7(#) be the
parametrized curve, and (1) = dy/dt|, = dy(d/dt) e T(X),,, be the tangent
vector of the parametrized curve y(¢). The square of the geodesic curvature is
given by the formula k() (0)*=| (D 77,1 D; 1O ., where (1)) =70/ 7(D ], o,
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is the unit tangent vector of y at y(1), and |vl,, = g(y())(v, v)"/* where
v e T(X),,,. It is easy to see by a direct calculation that this number is indepen-
dent of the orientationt and parametrization chosen for I. Let us fix once and
for all, an orientation for I. 1f y is nondegerate, we can define a unique princi-
pal normal vector by the formula

RGN = [D;, (N 7D (+ VKD

We will always follow this convention. It is again easily seen that n(y) is inde-
pendent of the choice of parameter on /. (It does depend upon the orientation
which we have fixed.) Finally, we set k,(;)() = + vk, (r)()>. We note that
k,(y) and n(y) are of class C*~?, and #(y) is of class C*~!, whenever 7 is of
class C*.

Let n,: V,(X) — X be the Stiefel bundle of 2-frames in #n-space associated
with the tangent bundle T(X). By this we mean for each xe X, the fiber
75 1(x) = V,(X), is the Stiefel manifold of orthonormal 2-frames in the Euclidean
vector space (T(X),, 8(x)). Werecall that V(X), is compact, and can be viewed
as a closed submanifold of S, X S, where S, is the unit sphere in 7(X),. In
fact most of the time we will view V,(X), as a closed bounded subset of
T(X), X T(X),, i.e., ViX) = {®,0) € TX); X T(X),,|v], = |0}, = 1, and
g(x)(v, w) = 0}. Finally, let V = V,(X) X R*, where R* denotes the strictly
positive real numbers, and let z: V — X be the composition of the projection
onto the first factor followed by =,.

Let us fix an orientation for the circle C, and let I = [0,2]. Let us set
E(I, X) = {f: [0,2] — X|f is C? and f is a nondegenerate immersion}. Let
E(C, X) be those elements of E(I, X) which can be extended to a C? periodic
map of period 2 and principal domain of definition [0, 2]. Let us endow these
sets with the C*-topology. (The two possible choices of C’-topology agree be-
cause / and C are both compact, [2], [8]. In fact, these are open subsets of
the function spaces consisting of all mappings C*I,X) and C%C, X).) The
elements of E(I, X) and E(C, X) are the parametrized non-degenerate curves.
Let ND(I, X) and ND(C, X) denote respectively the set of equivalence classes
of elements of E(I, X) and E(C, X), where we identify f and g if and only if
they differ by an orientation presérving C* reparametrization of I or C. If we
identify an element of E(I, X) which is parametrized proportional to arc length
with the corresponding unique element of ND(I, X), we can view ND(I, X) as
a subspace of E(I, X). Let us define R: E(I, X) x [0,1] — ND(I, X) by the
formula R(y, w)(8) = y((1— W)t + us,(¢)) where s, is the parameter proportional
to arc length, and ¢ is the given parameter. R is continuous and defines a de-
formation retract of E£({, X) onto ND(I, X), and therefore these spaces have
the same homotopy type. Let C*(I, M) denote the C* functions from [ into a
manifold M with the C* topology.

If y e NDU, X) or E(I, X), let (y) e C'(I, T(X)) denote the map #(y)() = unit
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tangent vector to y at y(¢). The induced map ¢: E(I, X) — C'(I, T(X)) is clearly
continuous. Similarly we can define continuous maps n: E(I, X) — C'(I, T(X))
and k,: E(I, X) — C%(I, R*) by the formulas n(y)(f) = principal normal to y
at 7(¢), and k,(y)(t) = geodesic curvature of y at y(¢). We can also define
v: E(, X) — CU, V) by v(9)@®) = @), t(0)(®), n(7)(@®), k,(7)(#)). When we re-
place I by C all the same statements hold true. Let us pick v, == (%,, 8, n, k) € V,
let E, = {y € E(I, X) | v(y)(0) = v}, and give E, the induced topology. We can
now state precisely our main theorem.

Theorem A. Letp: E,—V be defined by p(y) = v(y)1); p is clearly a con-
tinuous map. Let us pick a base point y, € p~'(v,), and let py: n,(Ey, p™Y(v0); 74)
— m(V,v,) be the usual induced map on homotopy groups (and sets). Then
P, is an isomorphism for all k > 2, and a bijection for k = 1.

We prove this by showing that the triple p: E, — V satisfies enough of a
homotopy lifting property to imply p, is a bijection. We define and discuss this
property in some detail in § 3, and show among other things that it is a local
property. _

Pick a point §,¢ C, and let N, = {y e ND(C, X) | v(;)(6,) = v,}. Thus the
deformation retract defined by R gives us a homotopy equivalence between the
spaces p~'(vy), p'(v)) N E(C, X) and N,. We show in § 7 that x,(E,,7,) = 0
for all /. Therefore the homotopy sequence implies that x;(N,, 75) = 7. (V, vy)
= 1,.(VAX), (x,, 8, 1)), assuming y, is parametrized proportional to arc length.
If we set i = 0, we can classify the arc-components of N,, i.e., the based non-
degenerate regular homotopy classes, by looking at ,(V,(X), (x,, £, 1,)). Let
2, ={reC%C,V)|7(8,) = vy}, where £, has the C° (compact-open) topology.
Let o: N, — £, be defined by o(y)(®) = (#(8), tG)(0), n(1)(®), k,(1)()) ;¢ is con-
tinuous and by our theorem a weak homotopy \equivalence. Both N, and 2,
carry the structure of paracompact Banach manifold [10]. Hence by theorems
of Palais [9] these spaces satisfy the hypotheses of the Whitehead theorem.
Thus ¢: N, — £, is a homotopy equivalence.

We will close this section by outlining the remainder of this paper, § 3 as
menticned deals with a local lifting property which will imply Theorem A. In
§ 4 we compare locally the case of an arbitrary metric and the flat metric
induced by taking Riemann normal coordinates as orthonormal coordinates of
a flat space. We can then reduce the “curved” space problem to a slightly more
involved “flat” problem. The crucial lemma of this paper is Lemma 5.1. It is
a generalization of the proposition in [5]; also see [3,2.1]. The idea is as fol-
lows. Let 2: [0, 1] — $*! be an immersion, and p(#) > 0 a C! function. Then

) = f ‘2(p()dz is nondegenerate, #)(1) = (1), n(p)(1) = tA)(1), and
e
k(1) = 1/p(1). 1f we use Proposition 4.1 to reduce the problem to a Eucli-

dean one, we can then try to apply Smales immersion theorem [11], to curves
on the sphere, and then try to construct the desired nondegenerate curves y by
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picking the appropriate weighting function p. However, in our lifting problem we
must be able to construct p such that (1) = x, x being some relatively arbitrary
point near 0. In § 5.1 we see how arbitrary x can be, provided 2 has some nice
properties. In § 6 we prove some technical lemmas which enable us to apply
Lemma 5.1 by insuring that our 2’s have the desired properties. § 7, entitled
odds and ends, contains a technical reparametrization, Lemma 7.1, and the
proof that £, is weakly contractable, Corollary 7.2. In § 8 we reduce the proof
of Theorem A tc an abstract Theorem 8.2, which we prove in § 9. In § 8 we
have to introduce certain Sobolev spaces. Anything we need can be found in
[1, pp. 165-168].

3. Abstract topology
Let I* = the n-cube= {(xl, L x)|0<0,< 1 1S} CRY I ={xel*|x,
=1,i=0,1,F"" = U o = y IRy, and J*t = {xeaL"|x¢Int I3

(&,1)

Definition 3.1. A one parameter family of maps h,: I* - I*,0 <t < 1,
is said to be an admissible deformation of I” if:

i) the induced map H: I X I* — I" defined by H(¢, x) = k,(x) is continuous,

i) hy = id, b, |F** = id for all t¢ [0, 1], and ‘

iii) A, (oI*) < al" for all 1 [0, 1].

Remark. Let /4, be an admissible deformation of I7, and K:(I*",F*") —
(I, J*-1 a homeomorphism mapping F*~! homeomorphically onto J*~. Let
h,=Koh,oK ' and let H: I x I" —I" be the induced map defined by H’(t, x)
= h,(x) = K o H(t, K-'x). Then H is continuous, 4,(x) = x for. all xeJs},
tel0, 11, b, = id and %,(81") C aI*. Hence, if we replace F*~! by J*~! in Defini-
tion 3.1 we get a completely equivalent notion.

Definition 3.2. Let A,: I* - 17,0 <1 < 1, be an admissible deformation of
I*. We say h, is a strong admissible deformation if h,(Iz ) C It for 1 < k< n.

Definition 3.3, Let z: E — B be a triple where E and B are topological
spaces, and z is a continuous map.

r-%.,B
We say {z: E — B} has (strong) property P, if for each n and each pair of
continuous maps ¢,: I* — B and ¢: F*~' — E such that 7o ¢ = ¢,|F*~!, we
can find a (strong) admissible deformation 4, of I” and an extension ¥ of ¢ to
all I* such that 7 « ¥ = ¢, 0 A,.

Let us note that there is a notion exactly equlvalent to Definition 3.3 if we
replace F*~' by J*~'. In fact, {zx: E — B} has property P if and only if it has
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property P with J*~! replacing F*~! in Definition 3.3. If we use this remark,
and then apply the usual proof in the case where z: E — B is a Serre fibration
(see [7]) we get the foliowing important proposition.

Proposition 3.4. Let 7: E — B be a triple consisting of two topological
spaces and a continuous map which satisfies property P. Pick b,e B, and
yoen~'(by) = F. Then the canonical map r,: n,(E.F; y,) — n.B,b,) is a
bijection (1 — 1 and onto).

The following elementary proposition follows immediately from the defini-
tions.

Proposition 3.5. Let z: E, — B, and p: E, — E, have (strong) property P.
Then r o p: E, — B satisfies (strong) property P.

Definition 3.6. Let E ard B be topological spaces, and z: E — B a con-
tinuous map. Let ¢: I" — B, and ¢: F*~! — E be continuous maps such that
To¢ = @|F*'. By a deformation of (p,¢) we mean a continuous map
¢: Fr='x1— E such that o ¢, = ¢ on F*~' and ¢),=¢ where ¢, = § | F*~' X {1}.

Proposition 3.7. Let n: E — B be as above. Then = has (strong) property
P if and only if, for each n and each pair of continuous maps ¢: I — B and
¢: F*=V such that xo ¢ = o|F™™', we can find:

i) adeformation ¢, of (¢, ¢),

i) a (strong) admissible deformation h, of I*, and

iii) an extension ¥ of ¢, to I such that o ¥ = @ o h,.

Proof. 1f m: E— B has (strong) property P, this is a triviality. Let ¢: I* — B
and ¢: F*~' — E be a pair of continuous maps such that z o ¢ = p|F*"'. We
want to find a (strong) deformation k, of I" and an extension ¥ of ¢ to I"* such
that r o ¥ =g o h,. Let us define a (strong) admissible deformation %, of I* as
follows. Let &, be the (strong) admissible deformation given by ii) in the hypo-
theses. Let C,=(xel*|1/2<x,<1) for 0Kt <1, and T§,={(x,, - - -, x,) | x e I*,

Xy = stf2,51/2 < x, < 1for l % k,0 < s < 1}. Then I = (J T% U C, for
k=1

each fixed t. Let us introduce the following shorthand if v = (x, . - -, x,,)‘e R”
and ae R, by x — a we mean (x, — a, - - -, x, — a). We will now define h,. If
x ¢ C,, then define (h, (), = ( (—1~ t—%)) , and if x e T, then x, = s1/2,
=Y

0<s < 1, and set (£,(x), = 0 and (h_,(x))L = (%, — st/2)/(1 — st/2). We then
see by direct calculation that 4, = id, k, | F*~! = id, and h, is well-defined and
is a (strong) admissible deformation of I*. Let ¥ be the extension of ¢, to I*
given by i) and ii). We define the desired ¥ on C, by ¥'(x) = if(’ﬁ_—.i%) It
xeTd, then 0 < x, < 1/2, say x, = /2,0 <s< 1, and therefore s/2 < x, < 1
for I = k. We then set ¥'(x) = 9;?(/1 (x)). We can then check dlrectly*that r
extends ¢, and ¥ is continuous and well-defined, and that 7 - ¥ = ¢ o A,. This
completes this proof.
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Definition 3.8. Let E and B be topological spaces, and z: E — B a con-
tinuous map. We say =: E — B has strong local property P if for each xe B
there exists a neighborhood U of x such that z: z~'(U) — U has property P.

Theorem 3.9. If n: E — B has strong local property P, then it has strong
property P.

Proof. For each be B, let U, be an open neighborhood of & such that
= n~Y(U,) — U, has property P. Let ¢: I” — B, and ¢: F*~' — E be continuous
maps such that 7o ¢ = ¢ on F*~*. The sets ¢~ (U,) forms an open cover of I”.
Hence by the Lebesgue covering lemma there exists an integer N > 0 such that
any subcube of I*, with sides parallel to those of I* and side of length 1/N, is
contained in one of the sets o"XU,). Let B, =B, ....;. = {x e I"|i,/N < x, < §;
+ I/NLOL i < N—-1,1<k<n Set By ,={xeB;|x, = iz/N}, Br s

={xeB;|x, =i, + 1/N}, and F; = CJ B; ;... The B,’s cover I", and each B,
k=1

is contained in one of the sets ¢~ (U,). We will order the (N)* n-tuples
I = (i, -,I,) lexicographically. If I is an n-tuple, let I + 1 be the n-tuple
immediately succeeding I, and »(I) the number of n-tuples less than or equal
to I. We now construct the continuous extension ¥ of ¢ and the strong admis-
sible deformation A, of I" by induction.

Induction step I. Let C; = F*~' \J U B;,. Assume there exist a continuous
I'sr

mep ¥;: C;— E extending ¢, and a continuous function H;: [0, J(D] X I* —I*
where J(I) = u(I)/N™ with the following properties. Set h; ,(x) = H,(t,x).
Then h;, = id, by, |F*' = id for 0 <t < J(D), by, (127D & I"’l and 7o ¥,
= @ohr a1y

We will now prove our theorem by showing that step I implies step I + 1,
and noting that step 0 is trivially true, and step (N)" is the desired result. Look
at B;,,andnotethatF,; ,, =B, ,NC;. Letf=@oh; y;,|Br,, andp=¥;|F;,,.
But we know that B, , is contained in one of the ¢~(U,). Hence we can find
continuous maps K: [J(I), J(I + 1)] x B;,,— B;,,, and P: B;,,— E extending
p with the following properties. K(J(I),x) = x,K(,x) = x for xe F;,, and
teJW),J( + D], K(t, %) € By, p, for x e By, and te (D, JU + 1), and
n o P(x) = f(K(J(I + 1),x)) for xe B;,,. Define ¥,,,: C;,,=C; U B;,,—~E
by ¥;,,|C; = ¥; and ¥;,,|B;,, = P. ¥y,, is clearly a well-defined contin-
uous extension of ¢. We now extend K: [J(I),J(I + 1)] X B;,,—~B;,, toa
map K: JI),JUI + 1] x I* — I* as follows. If for some &, x, < i,/N", then
we set K(f, (x,, -+, x,) = (x;, -+ -, X,). We are left with the case where
x; > i, /N™ for all k. We then set K(2, x), = x, provided x, > (ix,,)/N". We
define % by the formula (%), = x, if iy/N* < x; < (§;,,)/N"™ for some index /,
and by (%), = (¢, )/N™ if x, > (§,)/N". Then % e B;,,, and we set K(z, x),
= K(¢t, %), where [ is an index such that i{,/N* < x; < (i;,)/N™. Note if we
set k. (x) = K(t,x), the k, have the following properties. k,(x) = x for all
xeCr,ky(x) = x for all xeI*, and k,(It7") C I3 for all ¢. Let us define



NONDEGENERATE CURVES 193

W {/n(x), 0<t<ID),
T k), I << I ¥ 1),

and set H;,,(t,x) = hy,,,(x). It is then easy to directly check that H,,, and
¥, ,, have all the desired properties.

In the remainder of this paper we will prove the following theorem.

Theorem A’. Let p: E, — V be the triple defined in §2. Then p: E, -V
has strong local property P.

By using Proposition 3.4 and Defirition 3.8 we see that Theorem A’ implies
Theorem A. Let (x,, v, k) ¢ VV, we want to look at neighborhoods U of this point
of the form U =W x V, X (k,, o), where k,< k and W is a sufficiently small
neighborhood which is the domain of x, centered Riemann normal coordinates
(%), -+ -, x,). The exact form of the neighborhood U will be chosen in the next
section. However, given ¢: F*~' — p~(U) and ¢: I"— U such that po¢=¢ | F*"!
we cannot lift ¢ immediately because of the nature of our lifting mechanism.
We must first “reparametrize” the cube I*, and preform some preliminary de-
formations on the curves in ¢. It is because of this that the topological abstrac-
tions of this section are needed.

4. A local comparison to determine the desired neighborhood "

Let (X,g) be the given Riemannian manifold, and let (%,2,k) e V, ke R,
b=, A),and DeVy(X);. Let U =W x V, X (k, =), where 0 < k < k, W
is the domain of %-centered geodesic coordinates (x,, - - -, x,) and V, is the
Stiefel manifold of orthonormal 2-frames in n-space. Let the metric tensor g
take its usual coordinate form g(x) = ) g;;(x)dx'dx’ on W. We recall that
£:0) = g;(%) = d,;, (38,;/0x,)(0) = 0, and therefore the Christoffel symbols
I'%,(0) = 0. If we identify the tangent space 7T(X),, x ¢ W, with R* in the usual
way (i.e.,a = (a,, - - -, a,) is identified with 3 a,(3/6x,)(x)), then we note that
as x varies over W, we identify V,(X), with a slightly different subset of
R™ X R™ determined by the variation in the metric. This identification clearly
varies smoothly with x ¢ W. We can also define upon W the flat metric g, =
21 0.dx'dx?. If y: I — W is a nondegenerate immersion with respect to g(gy)
we call it g(g,)-nondegenerate. 1f y: I — W is g(g,)- degenerate let #(y), n(y),
k(D) ne(), k()] denote the unit tangent vector, the principal normal
vector, and the geodesic curvature of y calculated with respect to g(gy).

Let us pick (x, v, ) e W X V, X (k, ). Furthermore, assume v = (g, b) ¢ R"
X R, where 3, (@) = 3, (b)))*=1 and 3 ab;, = 0 (i.e., (a, b) is a 2-frame
with respect to the flat metric). Let t,e I, and y: I — W be a g,-nondegenerate
curve such that y(¢) = x, t.(y)(t;) = a, nx(y)(t,) = b, and k,(y)(t,) =1. We then
see 1)t =a/(T] g: (X)a.a )%, and (k (P)(t)) = (3 8, (x)a,a)) X3 8. x)a,a,]
[> gi;(0)cic;] — [3] g, (0aic;)?), where €; = bl + Z I'y(x)aa,. Hence

J,/L‘
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1(y)(t,) and k,(y)(¢,) depend upon x,a, b and ! alone and not on our choice of
7. We can use these formulas to define the functions #(x,a) = #(y)(t,) and
k,(x,a,b,0) = k,(p)(t). Now k,0,a,b,])* = I, and 3(k,(0,a,b,D?) /ol = 2l.
Hence because of the compactness of ¥, we can find a neighborhood W, of
0, W, € W such that k,(x,a,b,1)* > (2k/3)%, if k <l and x¢ W,. In that
k,(N() = k,(x,a,b,1) >0 if xeW,, wecan define the principal normal
n((ty) = k,Sx, a, b, DL g:y(Naap~*d] where d = o(}] g;,(aa;) —
a(y; g, (0ac),c; = bl + ¥, Ti(xaa, and ¢ = (¢, ---,c,). We see that
ik

n(y)(t,) does not depend on y but only on x, v = (a, b) and /, and we can then
set n(x,a,b,l) = n(y)(t). Hence we have defined a smooth 1-1 map «:
W, X V, X (k,©) =W, XV, X (2k/3, o) by the formula «(x,(a,b),]) =
(x, t(x, @), n(x,a,b,D), k(x,a, b, D).

Let us pick (x, v, ) e W x V, x (k, o) where we assume » = (a, b))e R* X R,
2 giXaa; =3 g,4x)bb; =1, and 3 g;;(x)a;b, = 0 (i.e., (a, b) is an ortho-
normal 2-frame in the metric g(x)). Let t,¢1, and let us choose a g-nonde-
generate curve y: I — W such that (¢) = x, t(7)(t) = a,n(y)(t) = b and
k,(p)(1,). We then see that t:(y)(t,) = a/(3 (@)D = tx(x, ). We also see that
ket = (T @) UT ()X @) — (Tawe)] = kp(x, a, b, I} where
= bl — }'_‘, I'*(x)a,a;. Hence kz(y)(t)? depends only on (x, a, b, ). Further-

more k0, a b,D* = P, and 3(kz(0, a, b, )?)/ol = 2I. By the compactness of
V,, we can find a neighborhood W, of 0, W, C W such that kz(x,a,b,[* > (2k/3)*
for I > k and x ¢ W,. Since kz(y)(t) = kp(x,a,b,1) > 0 for xe W, (I > k),
we can define the principal normal 7y(y)(t,) = ng(x,a,b,l) = kz(x,a, b,
(37 (@))3 3 (ap)c — (3 agcal, where ¢, = bl — }"_, I'*(x)a.a;,. Thus

ny(y)(t,) depends only upon (x,a, b,l). Then as before we have defined a
smooth 1-1 map 8: W, X V, X (k, ) — W, X V, X (2k/3, ) by the for-
mula §(x, (a, b),D) = (x,t5(x,a), np(x,a,b,D), ky(x,a,b,])). Finally we note
that @ o § = id and B o &« = id whenever these compositions are well-defined.
This discussion can be summerized by the following proposition.

Proposition 4.1, Let us pick k > 0. Then we can find a neighborhood W,
of 0, W, C W, which depends only upon our choice of k, with the following
properties;

1 Ifr:l—Wyis g-nondegenerate and k,(y)(t) > k, then y is gp-nonde-
generate and k(y)(t) > 2k/3. Furthermore, if y: I — W, is gp-nondegenerate
and kz(y)(®) > 2k/3, then y is g-nondegenerate and k,(y)(1) > k/3.

2) Let us pick (x,v = (a,b), e W, X V, X (k, o)(x,v = (a,b), ) e W,
X V, X (2k/3, »)]. Pick tyel, and let y: 1 — W, be a glgpl-nondegenerate
curve such that y(t,) = x, t(y)(t) = a,n(y)(t,) = b and k,(y)(t) = ly(t) = x,
) = a,n (Dt = b and ke()(t) = 1. Then 1:G)(t), np()ity) and
ke(DE(P(@), n(7)(2) ond k,(7)(8,)] are all well-defined and depend only upon
(x,a,b,1l). We therefore set tz(y)(t,) = tz(y)(x, a, b, D), nz(y)(t)) = ng(x,a,b, D)
and k(1)) = kp(x, a, b, Dt(r)(t) = (x,a,b, D, n(y)(t) = n(x,a,b,) and
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k, () = ky(x,a,b,D]. In this way we define smooth 1-1 maps a: W, X V,
X (k, ) = Wy XV, X k3, ) and §: W, X V, X (2k/3, o) > Wy X V,
X (k[3, ) defined by a(x, a, b, 1) = (x, tx(x,a, b, ). np(x,a,b, 1), kp(x,a, b, 1)
and B(x,a,b,D) = (x,t(x,a,b,1),n(x,a,b,D,k,(x,a,b,1). Finally aof =
and f o « = id whenever the composition is well-defined.

5. A generalization of Fenchel’s lemma

Let R” possess its usual Riemann (Euclidean) structure, $*~' C R™ be the
unit sphere with its usual Riemann structure, and y: I — R™ be an immersion.
We recall that y is nondegenerate if and only if #(y): I — S§*~! is an immersion.
If we are given an immersion 1: [0, 1] — $*!, we want to find a curve y: [0, 1]
— R™ such that #(3) = 1, y(1) = a predetermined point x, and k(y)(#) > k > 0,
k being some some predetermined number. :

Lemma 5.1. Let D C R*» be a disc radius R, 0 < R < 1, centered at 0.
Let c¢(n) = 18n/v/'n, and B(n) = some number, B(n) > 1, which depends only
upon n and which we will determine in the next section. Let k be a real num-
ber such that 0 < k< [c()B(m)]7%, (¢,, ny) and (t,, n,) be two given orthonormal
2-frames, and k;,i = 0, 1, be two positive numbers such that k; > k,i =0, 1.
Pick x e D such that |x| < Ry/n/(2n). Let 2: [0,1] — S*~! be an immersion
such that

1) 30) = to, A1) = 1, {D©) = n, and (D) = n,,

2) {10, 1/2] is parametrized proportional to arc length and |#'(s)| < B(n)
for s€10,1/2],

3) the set {(t)|0 < t < 1/2} contains the 2" vertices of the mscrzbed cube,
Then we can find a C= function p(t),0 < p(t) < 1/k, such that the curve

1@ = J‘S,Z(r)p(r)dz- has the following properties:

a) (1) =x,t0 = t,n® = n, kGG = k;, i =0, 1.

b) [y(®O| < R, and k(1)) > k.

Proof. It is easy to see k(y)(©) = (o(9))~'. Hence if 0 < p(t) < c(m)B(n),
then' k(y)(#) > k. Furthermore #(3)(¥) = A(H) and n(y)(?) = t()(). Let K =

{yl y = flp(f)Z(‘c)d‘c, where po(¢) is smooth, 0 < p(z) < 1/k, p(i) = (k,)~" for
i=20,1, and f o(z)dr < 9R;. We note that K is a convex set. Let

t;€(0,1/2),1 < j < 2%, be the points such that (z;) are the vertices of the
inscribed cube. If we can show that each vertex .9RA(¢,) of the inscribed cube
in the sphere of radius .9R is within .9R+/n/(3n) of K, then we see that KD
open ball about O of radius R+/n/(2n), which implies that x ¢ K.

Pick one of the ¢;,,0 < t; < 1/2, such that A(¢,) is a vertex of the inscribe
cube. Let us pick p;(#) as follows. Let p,0) = (k)% p;(1) = (k) '
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1
f 0,)dt = 9R, p,(#) > 0, and p,(¢) be smooth.
1] .

|

!

1

|

|
ALl 1

|
at;b 1/2 ) 1

1
\
0

Pick an interval [a, b] about ¢, such that [a, 5] © (0, 1/2) and b — a = 2(.9R)/
(c(n)B_(n)). But ((b — @)/2)c(n)B(n) = .9R, so we can choose p,(f) to also

satisfy the relations fap,(t)<1/2(.9Rx/ﬁ/(9n)),flpj(t)dt<1/2(.9R¢ﬁ(9n))

and p,(0) < 1/k. Let 2, = f "0,0i(t)dt. Then 2,¢K, and |2, — .9RA(,)]
= 1 f aw — l(tj))pj(t)dt} because ORAt) = f 1pj(t)2(t )dt.  Therefore

12, — ORA(1)| < ‘f{ + |fb; + Ul[< 2. 2(1/2)(9RV7 [(9n)) + lﬂ But
A — 20D < |b 2 aj supa[fl’(t)I gb |6 — a] B(n) by Taylor’s formula‘f There-
fore ‘ i ") — 24D, 0dt| < [b — a| B(n) | *0,(0dt < 1.8R c(m)""(.9R) <

(1.8R)c(n)™" = (.9R)(+/1 /(9n)). Hence |2, — -9RA(t,)| < .9R+/7 /(3n), which
is what we wanted to show.

6. Smashing and stretching

Let us fix some notation for this section. Let D C R* be an open disc of
radius R centered at 0. Give D its usual Riemann structure, and let (e, e,) be
an orthonormal 2-frame. Let E = {y: [—1, 1] — D| a C*nondegenerate im-
mersion 7}, where we give E the C? topology. Let k, be some strictly positive
real number, and set Ey(k).= {ye E|{y(0) = 0, t(y)(0) = e, n(3)0) =
e, k() > Ky, te (1,11}

In this section we will prove two main lemmas (6.3, and 6.4) which easily
imply the following theorem.

Theorem 6.1. Let X be a compact set, and ¢: X — Ey(k,) a continuous
map. Then we can find a continuous deformation @: X x [0,1]1 — Eo(ko) of
¢ (.e.,p(x) = @(x,0)) with the following properties:

1) There exist numbers S and T,0< 8§ < T < 1, such that @(x, u)®)
= @(x)(®) for all |t| > T,xeX,uel0,1], and D(x,1) = &(y, 1)) = (2) for
al 0 <t <8, x,ye X, and C> f(1).
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2) The path t({(1)),0 < t < S, passes through each of the 2* vertices of
S
the inscribed cube, and f k(H(Ddt << B(n) = 277580 + (n — 1)'%).
0

If we are to employ Lemma 5.1 it is clear that a theorem of this type is
needed.

Sublemma 6.2. Let X be a compact set, and a: X — C¥[—1,1]; R) be a
continuous map, and assume a(x)(0) = a’(x)(0) = a”(x)(0) = O. Then there
exist continuous functions b;: X — ¢°([—-1,11,R), i = 0, 1, such that

1) a(x)(s) = s’b,(x)(s), a’(x)s) = sb,(x)(s) and

2)  by(x)(©) = b,((0) = 0.

1
Proof. This is a direct consequence of the fact a(x){(s) = s f Da(x)(st)dt
0

where D denotes differentiation with respect to the variable v = st.

Lemma 6.3 (Smashing lemma). Let X be a compact set, and ¢: X — E\(k;)
a continuous map. Let U = [—a,a],0 < a < 1, and assume ¢(x)| U is para-
metrized by arc length for all xe X. Let us extend (e,, e,) to an orthonormal basis
(e), - - -, e,) of R*, and use these as coordinates. Then we can find two neigh-
borhoods V = [—c,cland W = [—b, b] such that 0 < ¢ < b < a, and a con-
tinuous deformation @: X X [0, 2] — E\(k)(i.¢., P(x,0) = o(x)) of ¢ such that

D O, wO=e®) if b<|t] < 1,0, 2(0) =0, () = (1, FK[2, - - -,0)
forlt] < c,x,ye X, K > max (k(x)) where k(x) = k(p(x))(0),

reX

b
2) f KO(x, w)(Ddt < 1.

-b
Proof. Step I. Let us restrict ourselves to the interval {—a, a]. We see
o(x)(s) = se, + (s°k(x)/2)e, + a(x)(s), a(x)(s) = Z a(x)(s)e;, and a;(x)(s)
s

satisfy the hypotheses of Sublemma 6.2: 0 < |5} < a. Let 4 be a C~ function so
chosen that A(s) = 1 on [—1/2,1/2],0 < A()<1,2(s) = O for [s| > I, ] < a,
and that there exists positive constants C, and C, which are independent of our
choice of {, such that |2'(s)] < C,/l and |27(s)} < C,/E. Set p(x,s) = se,
+ (5% (x)/2)e,, and let @(x, u)(s) = p(x,s) + a(X)(®[1 — iHul,0 < u < 1.
O(x, u)(s) = (x)(s) if |s] > 1. Note that we have not yet chosen /. There exists
an ¢ > 0 such that if {|o(x) — @(x, w) |, < ¢ for all x e X, u e {0, 1] where || ||, is
the C*-norm, then @(x, u) € £,. But @(x, u)(s) — o(x)(s) = a(x)(s)ui(s),|s| < I,
and @(x, u)(s) —o(x)(s) = 0,1s] > I. Hence |@(x, u)(s) — o(x)(s)| < s[u%)lga(x)(s)],
sel—

|97 Cx, w)(s) — & (X)(8)] < |2 ()] |a(x)($)]| + |4(s)]|a’'(x)(s)], and |97 (x, u)(s) —
o”"(O(s)| < (A7 ax) ()| + 21X |a’ (0] + 12(6)]{a”(x)(s)!. Hence by
Sublemma 6.2, the compactness of X and the estimates on i’ and 2/, we can

find an { so small that [ #(x, ) — o) |, < ¢ and f K@, w)(dt < 1/10.

Set b = | (b = b in the statement of Lemma 6.3).
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Step 1I. Let us limit ourselves to [s| <1/2. Hence @(x, 1)(s) = (s, s°k(x) /2,
0,...,0), and let @(x)(s) = P(x, 1)(s). Let ¢(s) be a C= function so chosen
that ¢(s) = O for |s| > d, ¢(s) = 1 for [s] < 5d/6, and 0 < ¢(s) < 1, and we
can choose positive constants C, and C, independent of d such that |¢/(s)| < C,/d
and |¢"(s)| < C,/d®. Let us assume 2d < 1/2. Let @(x, u)(s) = (s, s*/2(K¢(s)u
+ (1 — ug(sNk(x)), u&(s), 0, - - -, 0), where &(s) is an even (£(s) = £(—ys)) C*
real-valued function such that £(s) = O for |s| < d/6 and |s| > 2d, and where 0 <
u < 1. By this formula there exist 4, and B, such that if [£(s)| < 4, and d < B,,
then @(x, u)(s) e D for all (x, u, s). @'(x, u)(s) = (1, sh(x, u, s), ut'(s),0, ..., 0)
where h(x, u, 5) = sIKug(s) + (1 — ug()k(x)] + (*/2DIK — k(x)ud/'(s)]. Pick
e < 0 so small that k(x)*/(1 + 2)* > k3. There exist 4, and B, such that if
|§'(s)| < A4, and d < B,, then |@'(x, u)(s)]! < 1 + ¢ for all (x, u) and |s] < 24.
Q" (x, u)(s) = O, m{x,u,s),us’(s),0, ---,0), where m(x, u,s) = k(x) + u(K
— k(x))(s) and u(s) = [P(s) + 2s¢’(s) + (57/2)¢"(s)]. There exists a positive
constant C, independent of our choice of d such that |u(s)] < C,,|s] < 1/2. If
|s] < 5d/6 or |s| > d, then m(x, u, s) # 0 and hence @(x, u)(s) is nondegenerate.
We assume &7(s) # 0,5d/6 < |s| < d. This implies @(x, u)(s) is everywhere
nondegenerate.

k(D(x, u))(s)* = k(x, w)(s)* = [1 + A*+ u?(&')17*[(1 + A* + w(EDD(m* + u*(§")")
— (mh + &' = [1 + B + W) 7°[m® + W) + (mug’ — hug’”’)*}].
But m(x,u,s) = k(x) + ulK — k(x)]u(s), and therefore there exists u, > 0
such that m(x, u, s)?/(1 + &)?* > k2 for 0 < u < u,;, u, is clearly independent
of the choice of d and &. Set &7(s)? = (1 + &)*k2 + 1)(uy) 2 = a for 5d/6 <
Is| < d, and let |§7(s)} < « for all other s. Then u?§”(s)*/(1 + &)* > k2 for
5d/6 <|s| < d,u, < u<1. Hence |&(s)| < 2da and |§(s)| < 4d%. k(x, u)(s)?

< m(x, u, 5)* + w&”(s)* < K1 + C,)?* + &%, and therefore fzdk(qj(x, w)(s)ds
~2d

< 4d(K*(1 + Cy) *+ a®)'?. Let d < min (B, B,, 4,/2a, (A,/4a)'?, (.9)(1/4)

(K*(1 4+ Cp* + a)~¥%). Then |&(s)| < A,,|&'(8)| < A,, K(D(x, w))(s) > k,, and

Ide(Q(x, w)(s)ds < 9/10. This proves our lemma if we let ¢ = d/6.

—-2d
Lemma 6.4 (Stretching lemma). Let D be a disc centered at 0, and with

radius R <1 and the usual metric, etc. Let 0 << A <1, andlet ¢:[—A, A] —D
A
be a nondegenerate immersion such that ¢(0) = 0, k(p)(H) > k, > 0, f k(p)(@)dt

-4
<1 and (p)(0) = v,e 8" 1. Pick weS™! such that the geodesic (great circular)
distance ds(vy, w) < n/6. Then we can find a deformation ¢, of 9,0 < u < 3,
such that

1) ¢.(0) = O for all u, {p)(0) = w, @() = ¢(9),

2)  ¢,(1) is nondegenerate for all u and t, and k(p,)(t) > ko,

3) there exists a real numbdr a, 0<a<< A, such that ¢,(1) = (1), 0 <u <3,
[t > a,
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4) ¢, defines a continuois curve in C[— A, A], D),
A s
[ keade < L) = 2480 + v = 1.

—A

Proof. Step 1. Pick coordinates in R* such that v, = e, and n()(0) = e,,
and a positive number K such that K > sup (1, 2°%,, k(¢)(0)). Let us repara-
metrize ¢ so that near 0, ¢ is parametrized by arc length. By applying Lemma
6.3, we can find a deformation ¢,(?) of ¢, 0 g u < 1, and numbers B and C
such that 0<C<B <4, ¢,(t)=(1,1°K/2,0, - - -, 0) for || < C, and ¢, () = ¢(2)

for |¢] > B. Furthermore choose ¢, 50 that k(p)(®) > ko, f Ke)(Ddt < 1,

and [¢,()] < R/2 for 0 < {t| < B. (¢, {t) <R, of course, for all u and
te[—A4,A4])

Step 2. Let us pick a real number D > 0 such that D < min( C, (2K)™).
Let 2 be a smooth strictly increasing monotone function on [1, 2] such that
A1) =0and 22) = 1. Set w = (1, w,, - - -, w,) /(1 + wi + ... + Ww2)Z, But
dg(vy,, w) < x/6 implies w2 + - .. + w2 < 3/4. Hence |w,| < +/3/2. Let w,(2)
beaC” function such that wz(O) =0, wz(t) = w, for 0 < |¢| < B,. We can also
(B,)~t. Pick B SO- small that 16B < min (R /8, D). Finally, let us pick m such
that (2’"“K)“1 < B, < (2™K)"'; note m > 5. Let us choose another C~ func-
ion £(#) such that {() = O for |7| < B,/2,L(s) = O for [¢| > 9B,, L(®) is even,
g’(t) = K2™* = a for B, < |t| < 4B,, and |{"'| < K2™~* elsewhere. Further-
more, we can choose £ such that |{’| < (8B)(K)(2™~") = B,K2™* < 1/2.

|

|

|

| |

. \

L 1 1 1 1 ] B B 1 Il

0, B, B, 2B, 4B, 1 3B,

12 —a

| |

} 1

|

et

graph of ¢

We now set ¢,(8) = (¢, £K/2 + A)w, (1), 20,0, --+,0) for [f| < D,
1<u<?2. For [t} > 9By, ¢,() = ¢,(1). ¢, () = (1, Kt + awy(), 2w’ (), 0, - - -,0)
and ¢/(t) = (0, K + awy’, 2”,0, ---,0). By our choice of w, and { we see
@,(?) is nondegenerate. Note that 1 <[, (NF<1+(1/2 + v3/20+ 1 <4=22
e )®)? > (K + ) + Q)11 (OF > 27°UK + w))® + (). Now
jwy’(1)] < 1/B, < 2™*'K. Look at u, such that A(u,) = 2-*2, Hence for
1 <u<uy,i(uy) <272 and therefore [A(wwy ()] < K/2. So k(e )()
> K20 = (K/2%* > ki 1If ¢| < B, or |t} > 4B,, then w/(¥) =0 and
k(p,)(@)? > K?/2° > k}. Finally, let B, < |#| < 4B,, and A(«) > (2)"*?). Then
2L (s) > (2)~mPK2m* = K2-° Thercfore k(p,)()? > (K/2%% > ki Let
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98
us estimate J = f k(p,)()dr.

-~9Bp

J< f O gl @p < 2 f (K + Wy @0+ (0
<2 [(K + 1/BF + K279 < 2K [[(14 @y 4 @noye
< K2m**18B, < K2™"18(K2™)™! = (9)(2%) .

Note ¢,(1) = ¢,(t) + A0, w0, ((®), 0, - -+, 0) for [¢] < D. |p, () < R/2 +
R /4 < R, because 16B, < min (R/8, D), |w,()| < v/ 3B, and |{(£)| < (8By)(1/2).
Step 3. Let us restrict ourselves to ¢,(t) = (¢, (#/2)K + tw,,0, .. ., 0) for
[t] < By/2. Now w} + - - + w: < 3/4. Let us pick B, = B,/8 and let w,(z),
3 < k < n, be C~ functions such that w,(f) = w; for |¢| < Bl,w,,,(t) = 0 for
1> 4B, wi(0) = 0, T 040)* < 3/4, [w{(O)] < (B, and 3wy (o)’
< (3/4) (B,/2) < (R/ 4)3. Let A(u) be a strictly increasing monotone C* func-
tion'on [2, 3] such that A(2) = 0 and A(3) = 1. Let ¢, () = (¢, £#K/2 + tw,,
AwD), - - -, wa(DAw)). Then ¢, (1) = (1,1K + w,, aWi(®), - - -, AW,(1)) and
o () = (0, K, awy/, - - -, awl]). Hence ¢,(#) is nondegenerate, and |p,(2)] <
3R/4 4+ R/4=R. 1< |gOF <1+ (Kt + w)* + 3/4 < 4 = (2)* Hence
k() > (K/8)* > (ko). Look at

J= f P ke (Ddt < 2 f(K2 + W/ <2 f (K (B)7n — 2

—4B1

<2 f(KZ + (n — 2)K*(2)*m+2)2 < 2K2™ (n — 1)’B, < 44/n — 1.

Hence f"lk(gog)(t)dt <1+ 1+ 32.9 + 4¢/n — 1, which completes the proof
-4 .
of this lemma.

7. Qdds and ends

Lemma 7.1. Let X be a compact set, ¢: X — R be a continuous function
such that ¢(x) > 0 for all x ¢ X, .and K be a fixed positive number. Then there
exists a continuous function 2: X — €=, 1), I = [0, 1], such that Z(x)(O) =0
A1) =1, 2@ > 0, 7(x)0) = ¢(x)/K, and A(x)(t) = t if P(x) =

Proof. Let us set {(x) = ¢(x)/K. Since X is compact there ex1sts So»
¢ <, < 1, such that 0 < {(x)s, < 1. Set
sE(x) , ~1<s< 5,
£ = 1 "
4 L) — D — D, — 1D 55 <8< 2.

Then g(x)(0) = 0,g(x)(1) = 1, and g(x) is continuous and is C> everywhere
except at s,; in fact, g: X — ¢°([—1, 2], R) is continuous. Extend g(x) to all
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of R by making it O outside [ — I, 2]. Denote this extension also by g(x), and
note that /g(x) eL"(R),1 < p < «, and that g: X — L?(R) is continuous. Let
0 <e<min(s/2,(1 — 5)/2). Let ¢,(f) > 0 be the usual C~ approximate

identity, ¢, () = ¢,(— 1. support (¢,) < [—¢,e] and fm¢£(t)dt = 1.

Set 2(x)(2) = (g(X) )0 = f wg(x)(s)(,oe(t — 5)ds. Thg,n by our choice of g and

the usual properties of the convolution, we can see that A(x) is C=, it has all
the desired properties, and 2: X - €*(I,]) is continuous for each k (this last
Ais guo, 110, 1]).

Corollary 7.2. Let X be compact, K > 0 a real number, and ¢;: X — R,
i = 1,2, continuous real valued functions such that ¢,(x) > 0. Then there exists
a continuous function 2: X — €=, I) such that 2(x)(0) = 0, A(x)(1) = 1,
(@0 = ¢(x0) /K, V'(x)(0) = ¢,(x), Y(x)8) > 0, and Hx)(#) =t provided
¢(x) = K and ¢,(x) = 0.

Proof. Let A(x)(¢) be the functions constructed by Lemma 7.1. Set 1(x)(¢)
= A0 + o /2[f(x) — 2(x)”(0)] where ¢ is a C~ function, 0 < ¢ < 1,
00 = 1,p(t) = 0 for t > £,¢'(0) = 0,]¢'(1)] <2/e, and we will choose e,
0 < e <1, as follows:

PO = 22O + [ + @/2)0'0)(g(x) — A0)"(0)) .

Hence we can find a number B >> 0 such that if 0 < e < B, then 2(x)(¢) > 0.
Let us choose ¢ so small that 0 < ¢ < B. Then A(x)(?) is the desired family of
curves.

Remark. Let g be a Riemann metric on R*, X a compact set, 7: X —
C¥([0, 1], R*) a continuous map such that y(x) is g-nondegenerate for all x ¢ X,
and f(r), —1 <t < 0, be another g-nondegenerate curve. Assume f(0) =
7()(0), 1(H0) = t(y(x)(0), n(7(x))(0) = n(f)(0) and k,(H)(0) = k,(7(x))(0) for
all xe X. By applying Corollary 7.2 we can find r: X — %=, I), r(x)(t), re-
parametrization of the 7(x)(¢) with the following properties:

a) r(x)() = tif f(0) = y(0)'(0) and f/(0) = 7(x)"(0),

b) f(0) = (dy(x)/de())(0) and f7(0) = (Py{x)/(dz(x))*(0), where z(x) =
r(x)(¢) is the new parameter.
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Theorem 7.3. Let E, be as in § 2, and pick e e E,. Then rn,(E,e) = 0,
0<k < .

Theorem 7.4. Let X be a compact set, and f: X — E, a continuous map.
Then f is homotopic to a constant map. ,

We note that Theorem 7.4 implies Theorem 7.3 so we now prove Theorem
7.4.

Proof. Let W be a neighborhood of x,, which is the center of geodesic
normal coordinates (x,, - --,x,) so chosen that e, = 3/9x,(0) = ¢, and e, =
9/9x,(0) = n,. Let us reparametrize the f(x)(¢) such that for 0 <t < S < 1,
f(x)(#) « W and j(x)(¢) is parametrized by arc length for 0 <t < 5 (S > 0). There-
fore by Taylor’s theorem, f(x)(¢) = te, + (£k,/2)e, + a(x)(f), where k, =

k,(fFOIN0), e, = £, = ((f(x))0), e, = n, = n(f(x))(0), and a(x)(1) = é a;,(x)(t)e;

where a,(x)(7) satisfy the hypothoses of Sublemma 6.2 if we set a,(x)(—7) =
a;(x)() [because a,(x)(0) = d{(x)(0) = a//(x)(0) = 0]. Hence we can find
0 <8, < S such that te, + 7k,/2¢, + ua(x)(t) is nondegenerate for all ¢,
0<r<S;,and 4,0 < u <1, Let 2(u) be a C~ function which is strictly mono-
tone decreasing, 2: [0, 1/2] — R, such that 2(0) = 1, 2(1/2) = S,/ 2. Set f(x, 1)(?)
Jx)(W)). Hence f(x, 1/2)(1) = f(x)(1So/2) = (1S,/2e; + ((1S/2)ky| e, +
a(x)(tS,/2) because 25,/2 = §,. Let A: [1/2, 1] — R be another smooth mono-
tonically decreasing function such that A(1/2) = 1 and A(1) = 0. Set f(x, w)(®)
= (tS,/2)e, + (tS,/2)*(k,/2)e, + Aw)a(x)(tS,/2),1/2 < u < 1. This defines
the desired homotopy between f and the constant map f(x, 2)(t) = (¢S,/2)e, +
(88, 2)4(ky[ 2)e,, 0 < 8 < 2.

- 8. Proof of the main theorem

Let (x,v,k)eV,v = (t,n) e T(X), X T(X),, gx)(t, 1) = gx)(n,n) = 1 and
g(x)(t,n) = 0. Let k, be a real number 0 < k; < min (k, C(n)"'B(n)"*) where
B(n) = 2**80 + +/n — 1) and C(n) = 18n/+/ n, W be the domain of x-
centered geodesic coordinates (xy, - - -, X,), gr = 2, 8;;dx'dx’ be the flat metric
on W, and tz,np, and k; be the unit tangent vector, the principal normal
vector, and the geodesic curvature computed with g,. We adopt the rest of the
notation of § 4. Let W, be the disc Y (x;)* < (2R)*R < 1 such thatif y is a
g-nondegenerate curve in W, and k,(y)(t) > k,, then y is g,-nondegenerate and
kp(y)(® > 2k,/3. Furthermore, if y is g nondegenerate in W, and kx(y)(t) >
2k, /3, then y is g-nondegenerate and k,(y)(r) > k,/3. Let D = {x e W,| 3] (x,)*
<R/ n [2n)*} and V, =D X V, X (k,, ). V, will be the desired neigh-
borhood of (x, v, k). We will now show that p: p='(V,) — V, satisfies strong
property P.

Let I7 be a g-cube, F!C I¢ the zero faces, and ¢: 19— V, and
¢: F©' — p~'(V,) continuous maps such that p o ¢(c) = ¢(c) for all ce Fi~'.
Let ¢(c) = (x(o), t(c), n(c), k(c)).
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If « is the map of Proposition 4.1, then set ap(c) = (x(¢), tz(c), np(c), kp(c)).
Note that we do not have to “lift” (¢, ¢») but only a deformation of (¢, ¢); see
Definition 3.6 and Proposition 3.7.

Step 1. Look at ¢(c)(1),0 < t < 2. We see, by the compactness of F?~!,
that there exists a number #,, 0 <¢, <2, such that ¢(c)(#) € D and k,(¢(c))(8) > k,
for all telt,,2] and c ¢ F?~'. By a deformation we can reparametrize ¢(c)(¢) so
that t, = 1/2, so we can assume ¢, = 1/2. Since the group E(n) of Euclidean
motions js connected, we can find a map M: I — E(n) such that M(c)((¢(c)(D),
te(()(D), ne{gp(c))(1)) = (0, e, e,) where e, = (1,0, ---,0) and e, = (0, 1,0,
-+, 0). Let m(c)(t) = M(c)(¢(c)(1), t e [1/2,2]. Then |m(c)(?)| < R~/ n /(2n),
m(c)(?) is gp-nondegenerate, and k;(m(c))(t) > 2k,/3. Applying Theorem 6.1
to the curves m(c)(#)(with 1 replacing 0, etc.), we can find a continuous defor-
mation m,(c)(#),0 < u < 1, of m(c)()[m(c)(#¥) = m(c)#)] and two numbers
Sand T, 0 < S < T < 1/2, such that

Dm0 <Ry 1 [(2n), te(m ()1 =e,, np(m,())(1) = e, m,(c)(1) =
0, and kx(m,(c))() > 2k, /3 for 0 < u < 1,te[1/2,2], and ce F7°?,

2) m)@® =m@@for|t —1|>T,0<u<1,ce Fi},

3) mo)(®) =my(c)(#) = f() where f(2) is C=, for |t—1] < S, and ¢, ¢’ e F¢7,
and

4) the path 1,(f()), 1 < ¢ < 1 4 S, passes through each of the 2”-vertices

of the inscribed cube, k(f)(1) > B(n)-'C(n)~!, and f T ke(Pdr < B(n).

1

Let z: F¢°' — %~([1/2,2],[1/2,2]) be a continuous map such that z(c)(#)
=£1/2<t<1-T,z(c)(1)=1,72()S + 1) =3/2,2(c)2) =2, z(c)'(®) > 0.

If m(c)(z) denotes m,(c) parametrized by z(c)(?), then t,(m,(c))(z) is para-
metrized by the reduced arc length for 1 < ¢ < 3/2. Let m, ,(c0)) =
m () ()@ + (1 — wir), 0 < u < 1, and let my(c)(t) be m,(c) parametrized
by z(c). Hence myfc)(#) is defined for 1/2 <1< 2, and the curve
tp(my(c))|[1,3/2] is parametrized by the reduced arc length. Let

) (@) , << 12,

(/)u,(t) = B
M()"'(m, (), 1/2<t<2,0<u<2.

¢, (1) defines a continuous deformation of (¢, ¢), and it is ¢,(c)(z) which we will
try to lift.

Step I1. Let T,(S*"*) be the unit tangent bundle over the unit sphere
S*-1 < R*. Recall T(S*"') is diffeomorphic to the Stiefel manifold V, by re-
viewing the point x ¢ $* ! as the first vector of a 2-frame and v e T,(S*"), as
the second vector. Let £, == [1: {3/2,2] — $*7'|iis an immersion, 2(3/2) =
te(HN(312), (A (3/2) = n,(H(3/2)] where f() = m,(c)(z), 1 <t < 3/2. Define
s Ey— To(S™ 1) by ,(2) = (A2}, 1()(2)). Let é: F*-! — E, be a continuous
map defined by ¢y(c)8) = 1,.(m(c)(1), 3,2 <t < 2, and ¢5: I9 — V, be the



204 E. A. FELDMAN

continuous map defined by ¢z(c) = (M(0)tz(c), M(c)nz(c)). We see that
mogs(c) = pg(c) for ¢ e F4-'. By Smale’s theorem [11], we can find ¥'s extend-
ing ¢ to all 1% such that 7, c ¥y = ¢g. We now apply Lemma 7.1, and repara-
metrize ¥s(c)(1),3/2 <t < 2, so that we can assume (dt.(f)()/d)(3/2) =
(@¥ s(0)(@) /d)(3/2), and we can do this in such a way that we need not repara-
metrize ¢(c)(?) at all if ¢ e F¢~*. Let us define 2(c)(#) = tx(N() for 1 < ¢ < 3/2,
and A(c)(z) = the reparametrized ¢(c)(?) for 3/2 <t < 2. Then ) =
tp(m()), ce Fi7', 1 < t < 2, 2(c)@) is an immersion cel?, 1 <t < 2,
A 19 %Y([1,2]; S*Y) is conmtinuous, A(c)(1) = e,, 1(A(c))(1) = e,, H(c)(2)
= M()tz(c), and t(A(c))(2) = M(c)ng(c). We want to set y(c)(t + 1) =

ftp(c)(r)k(c)(s- + Ddr where p(c)(z) is C', 0 < plc)(z) <3/(Q2k)for0< < 1,
o)D) =kz(c)?, p{c)(0) = kx(H(1) 7, f 1p(C)(t)dt <R, and y(c)(2) = M(c)x(c).

A ‘
If we can find such function p(c)(z) and they depend continuously on ce 19,

and p(c)(1) = ]%(mz(c))a + 1)

,0 <t < 1, for ce F4! we would have our

problem solved, by reparametrizing the y’s so the end points match up and
then translating back by M(c)~".
Step 111. Let €'(S, R) be the C'-periodic functions from R to R with period
27z. Then % = ¥'(8*, R) is a Banach space in the norm |l¢l, = sup |e()] +
0<tx2
sup |¢'()]. Let H*(S', R) be the Sobolev space of square integrable periodic

0<5t<2n
functions of period 2z, which possess square integrable weak derivatives f* and

f’. Then H*(S', R)=H is a Hilbert space with inner product
2z 2x . 2x
(ho) = [fwewar + [“rogwd + [T1wgwar.
0 : 0 0

By Sobolov’s lemma (in this case an easy proposition about the absolute con-
vergence of the Fourier series of )1, pp. 165-168] we have a continuous linear
injection i: H — %. Furthermore i(H) is dense in ¥. Let i*: €* — H* be the
formal adjoint, pick cel¢ and define the following linear functionals on

€: alc) = p(0), w(c) = p(1), z(c) = i-th coordinate of f 1p(t),i(c)(t + Dde. It

is easy to see that a(c), w(c), u(c),1 < i < neC*: 19— C* are all continuous,
that «(c), w(c) and p(c),1 < i < n, are linearly independent for each fixed
cel? and that *a(c), i*w(c) and i*u,(c),1 < j < n, are also linearly inde-
pendent for each ce I Define n + 2 continuous real valued functions on I7
by: y,(c) = j-th coordinate of M(c)x(c),1 < j < n, A(c) = kp(f(1)~*, and

Q(6) = k(@' Let P = {pe H|0< p(t) <3/(2k,) for 0< 1 < 1, J-lp(t)dt < R}.
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Then P is an open convex set. We now apply Lemma 5.1 and find for each ce I?

an element p. e P such that y{(¢) = p(c)p), 1 < i < n,afc) = A(c)Xp) and

w(c) = 2c)p. Therefore the curve (o)t + 1) = ftpc(r)X(C)(r + 1)dz has
0

the following properties: y(c)(2) = M(c)x(c), 1,.((c))(2) = M(c)tz(0),

np(r(e)(2) = M()n,(0), kp(r ()@ > 23k, 1 <t <2, kp(1(0)(2) = kp(o),
t(r(@)(D) = (D), 1 () (D) = 1N,y = f(1) = 0, kp(((D) =

ke((D). Let P, = [p € ClO < i) < (2/3ky,1¢ 10,115 f (DA + 1)

< R, ref0, 1]}. P, is convex, and P C P,. For each ce Fi7! let p(c)(t) =

Imy(c)(t + D], 0<t < 1. Then p: F"! — @\([0, 11, R) is continuous, and
t

mfo)(t + 1) = f pe)X(D)A(c)(r + 1)dr. We want to extend each p(c)(1) to S!
Q

(i.e., to [0, 27} so that it is C'-periodic). It is clear that this can easily be done.
Hence assume we have defined a continuous map p: F@~! %S, R) = € such
that p(c)(t) = |m(c)(t + 1),0 <t < 1.

We will now quote two facts; the first, Lemma 8.1 is a restatement of the
Gram-Schmidt process, and its proof follows word for word the usual proof,
the second, Theorem 8.2 is our main abstract analytic lemma, which we
prove in § 9.

Lemma 8.1. Let H and C be respectively a Hilbert space and a Banach
space, i: H — C be a continuous linear injection, i*: C* — H* be its formal
adjoint, X be a topological space, ¢;: X - C¥*,1 < i<k, be k continuous
maps such that ¢,(x), - -+, 0 (x) and Fo(x), - - -, %, (x) are linearly independ-
ent for each x e X, P: H* — H be the duality isomorphism, and v,;: X — R be
k continuous real valued functions. Then we can find 9,: X — C*,Y,;: X - R,
1 < i < k, continuous functions with the following properties:

a) G,(x), . ,P,(x) for each xe X span the same subspace of C* as
0, (x), -, () for each I,0 <1 < k.

b) If Fx) = P(I*(@(x)), then {F (x), F.{x)> = §;, for all x.

) o)) =), 1 <i <k, ifandonly if P (x)p =Y (0,1 <i<Lk.

Theorem 8.2. Let H be a Hilbert space, C a Banach space, i: H - C a
continuous linear inclusion, i*: C* — H* its formual adjoint, D: H* — H the
duality map, P < H an open convex set, [ the n-cube, and F*~' the union
of zero faces.

a) Let v¥: I' -~ C* be continuous maps 1 < j < k, set v; = D({i*(v})),
and assume {vx), v;(x)> = §;;, x e I".

b) Let h;: [* — R, 1 <] <k, be continuous real valued functions.

¢) Foreach xel™ aconvex sei P, T C is given such that P C P,. Assume
there exists p, e P such that {p,, v;(x)> = h(x),1 <j< k.
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d) Let p: F*' - C be a continuous map such that p(x)eP, and
v¥(xX)(px)) = hy(x) for each xe F*'and 1 < j< k.

Then we can find a strong admissible deformation ¢, of I" and a continuous
map g: I" — C extending p*: F*~' — C with the following properties:

) p(x) e Po,(x) for all xeI.

i) oHe M) = hlp(),xel"1 << k.

We apply this to the case where H = H*(S, R), C = C'($", R), i = the Sobolev
inclusion, and P, P,(P,) and p: F9-! — C are defined as in the discussion pre-
ceeding Lemma 8.1. We take «, 8,14, 1 <j< n, as our families of linear
functionals, and 4, 2,y,,1 < j < n, as our families of continuous functions.
Hence we find a strong admissible deformation v, of ¢ and an extension p of
p: F1-! — C with the following properties: Set

rwm+n=fkmmm©m+na

0

Then tx(7((c)(1) = tz()(1), np(reN(D) = ne(H), kr(z(NA) = kx(N(D),
te(r () = M(v,(0)); tp(1,(0)), np(y()(2) = M(v,()), np((c), kx(y,(c))(2)
= kp((0)), 70(2) = M(u,()x(v,(€)); kr(7o()®) > 2k, /3, 1€ [1,2], and [y,(c) (D)}
< R. We now apply Corollary 7.2 in order to reparametrize y,(c)(¢) so that
7:(e)’(1) = (1) and 7,(0)""(1) = (1), where 1,(c)(9), t e [1, 2], are the repara-
metrized 7,(c), and we do not reparametrize 7, (c)(?) at all if y,(c)’(1) = f(1)
and 7,(c)”’(1) = f’(1). Let 1,(c)(¢) denote the suitably reparametrized 7,(c)().
Pick a retract 2: 1?9 — F?¢', and define

mReNe® , 1/12<t<1,

MM”ZL&WL 1<t<2.

Then set 7,(c)(®) = M(v,(c))'y(c)(®). Finally set

RO, 0<L:<1/2,

O, 1/2<t<£2.

Note that |7,(c)(®)| <2R, kz(7,())(#) > 2k, /3, tz(7:(c))(2) =1t5(1,(c)), np(y(c))(2)
= np((0)), kp(1:())(2) = kp(v,(c)), and 7,(c)(2) = x(v,(c)). Hence y;(c) is g-

nondegenerate and has the correct terminal data. ¥': 17 — E, is continuous,
U|\Fi ' = ¢, (seeend of Step 1), and po & = poy,.

9, Proof of Theorem 8.2

Step 1. For each xeI*, pick p, ¢ P such that (p_, v,(x)) = h;(x),1 <j<k.
Look at the expression

p.(x) = p, — il (<p;,',vi(x)§ — h(®)v(x) .
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p.(x) is continuous in x, and there exists e, > 0 such that if |x — x| < e¢,.,
then p,.(x) e P, because P is open. Then (p,.(x),v;(x)> = h(x),1 < j <k,
and therefore p..(x) has all the desired properties in a neighborhood of x’.
Since these ¢, neighborhoods about x” form an open covering of the cube I7,
by the Lebesgue covering lemma we can find an integer N > 1 such that any
cube with side of length = 1/N must lie in one of the ¢,, balls. Let B, .
={(xy -+ s X [/N <, <+ 1/N}L,O0<L iy, <N-—1. Oneachof the B, .,
we have one of the p..(x) defined, call it p,, ... ; (x). Hence we have N” boxes,
and N™ “good” functions.

Step II. Let us construct the ¢,: I" -» I* as follows. Let ¢,(x;, - - -, x,)%
denote the k-th coordinate of ¢,(x).

a) H¢/3 <x, <1 —¢/3forallk, 1 <k < n, then we set

Sot(xla v ,x‘n)k = ik/N

for

t/3 + i(1 — 2¢/3)/N — t/ON) < x, < /3 + i,(1-— 2¢/3)/N + t/(ON) ,
and

0(Xps -+ s Xde = i/ N + {3 — [£/3 + (1 — 2t/3)/N + t/ON)]}[9/ (O —~ 81)]
for

t)3 4+ i(1 —2t/3)/N 4+ t/(ON) < x, <t/3 + (i, + 1)(L —2¢t/3)/N —t/(ON) .
A direct calculation shows ¢, = id, and ¢, is continuous and well-defined on
the inside cube C, = {(x, - - -, x,]#/3 < x, < 1 — ¢/3}.

b) Let us fix ¢t. Let T,,, = {(x, -+, x)}x, =15/3,0<s<1, and
ts/3<x, <1 —1s/3,0<s< 1, forl#k}, and Ty, , = {(x;, - -+, x) | %,
=1—-15/3,0<s<1,and ts/3 <x, <1 —ts/3forl+4k,0<Ls5<1}. The
cube I* is broken up into the inner cube C, and the 2r “trapazoids” T, ;,,
i=0,1. We now define o, on T, ,. If xe T, ;,, set o, (x;, - - -, x,), = 0. Let
X, = St/3. Then ¢ (x,, - - -, x,); = i;/N if

St/N + (i;/N)(1 — 28t/3) — St/(ON}
< x; < 8t/3 + (;/N(QA — 28¢/3) -+ 5t/N,
and
0lXy0 X))y = /N + [x; — St/3 4+ i,(1 — 28t/3)/N
+ S1/(8M)9/(9 — 8Sn]
if
St/3 + (/N1 — 25t/3) + SHON)
< x; < S/3 4+ G 4 Il — 285¢/3)/N — St/ (9N}
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for j = k. It is easy to see that ¢, == id, and ¢, is well-defined and continuous
on Ct u T],o,t u-.--u Tn,o.r

c) We will now extend ¢, to T,,,,1 <! < n. LetxeT,,, Thenx, =
1 — 8t/3 for some §,0 < S< 1, and $t/3 < x; <1 — St/3forj+ k. Let

Sol,(-x]a Tty x'n)

=l = (o R G )

where the ¢, on the right is the ¢, defined on C,. Again a direct calculation
shows that this formula makes sense. A further check shows that (¢,),0 <t <1,
define a strong admissible deformation of I™.

Step II. Note that ¢ (T, ) = Iz;'. We define p on G Tt,0,1 by p(x) =
k=1
p(p,(x)). We immediately see o{F*~! = p. Let us look at the cubes

Cin,n-.in = {(-xp < ',xn)[1/3 + lk/(SN) + 1/(9N)
: <x < 1/3 4+ G + 1)/BN) — 1/(ON)} .

Since ¢, maps C,,.... ;, homeomorphically onto B;, ... ;,, we can define p on
,,,,,, i by-the formula p(x) = p;,, ... 1(0(x)) for xeC;, ... ;.. We will now
extend p to all C, by the following induction hypothesis.

Hypothesisi — 1. We assume p is defined for all (x,, - - -, x,) € C, such that
1/3<x,<2/3fork=1,..-,1—1, and 1/3 4+ i,/(3N) + 1/ON) < x,
< 1/3 + (G + 1)/(BN) — 1/ON) for k = [, - - -, n. Assume p satisfies i) and
ii) of the statement of Theorem 8.2 wherever p is defined. To show (I — 1) = (1),
pick x = (x;, ---,x,)such that 1/3 < x, < 2/3fork=1,--.,/,and 1/3 +
/BN +1/ON) <x, <1/3+ i, +1/BN) —1/ON)fork=1{+1,.--,n.
I£1/3 +4/(3N) + 1/ON) < x, < 1/3 4+ i, + 1/(BN) —~ 1/(9N), then p is
already defined on x. If 1/3 < x, < 1/3 + 1/(9N), we see that ¢, is constant
along the line (x,,--«,x,_,,1/3 + t/(ON}), X1, -++,%,),0 < t < 1. Hence
we can define p along this line by the formula

oy, - %, 1/3 + t/ON), x4y, <+ 75 X0)
= (1 —At)p'(xl, e, 130X, 0, X))
+otp(xy, X113 4+ T/ON), Xy, o005 X))
p is continuous in x and ¢, and has all the desired properties due to the con-
vexity of the P,. Set

Cil.z'H,,...,in, - {(xl’ .t "xn)l 1/3 S X S 2/3’ 1 _<_ IS l - 1’ 1/3 + lk/(3N)

+ 1/ON) < x, < 1/3 + (i + D/BN) — 1/(ON)
for k=11+1,-.--,n}.

I£1/3 +4,/BN) — 1/ON) < x, < 1/3+i,/BN) + 1/ON),1 < iy < N — 1,
we look at the line (x,---,x,_,,1/3 + (; — D/(3N) + _2/(9N) + 2t/(9N),
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Xpa1y <o+ %), O <2 < 1, which joins (x, -+ -, X,,,1/3 + i,/(3N) — 1/(9N),
Xppr, o X)) €Co 10y, e, t0 (X, -, 0,0, 1/3 + i /(BN) + 1/ON), x, .,
coo, X)) € Cyp gy irenine ) 18 @ constant along this line, and hence we can set

o5, Xy 1/3 4 G — DJGN) + 2/ON) + 26/ON), X35 -+ -5 %)
- (1 - Z)P(xn s Xy 1/3 + (ll - 1)/(3N) + 2/(9N),xl+l’ t "xn)‘
+ tP(xn s '3xl—171/3 + ll,/(3N) + 1/(9N)axl+1a .t '>xn) -

1f 2/3 — 1/ON) < x, < 2/3, we again note that ¢, is constant along the line
(xl’ v "-xl—l’z/{3 - 1/1(91\1) + t/(gN),le, . ',xn),o g t _<_ 1 Set

P(xlﬁ t "xl—1’2/3 - 1/(91V) + t/!(gl\(,)>xl+l’ . ',xn)
= P('xl, ey Xy, 2/3 - I/(QN)’xLH; s ',x") .

It is easy to see that we have now constructed by induction p with the desired
propertieson C, U T, U -+ U T, o Ty ={0ry; -, x)|x,=1-—8/3,
0<85<1,83<x;, <1 —8/3,j#k})ForxeT,,,weseex, =1 —5§/3
for some k. Set A.(x) = [(x,, ---,x,) — (1/2, .-, 1/2D]1[1/3 — 28] + (1/2,
-++,1/2). Then 2, defines a retraction of T, onto Ty ,, N C,. The 2,’s agree

on the overlaps, so they define a retraction A: CJ Teyy— ( C) T,m,,) N C,. We
k=1

k=1
see immediately that ¢,(x) = ¢,(2(x)) for xe U T%,,. Hence we can extend g
to Ty,y,0,1 < k < 1, by setting p(x) = p(A(x)).
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